Keyword: controls
Paper Title Other Keywords Page
MOB01 The FRIB Project – Accelerator Challenges and Progress linac, cryomodule, ion, cavity 8
  • J. Wei, E.C. Bernard, N.K. Bultman, F. Casagrande, S. Chouhan, C. Compton, K.D. Davidson, A. Facco, P.E. Gibson, T . Glasmacher, L.L. Harle, K. Holland, M.J. Johnson, S. Jones, D. Leitner, M. Leitner, G. Machicoane, F. Marti, D. Morris, J.A. Nolen, J.P. Ozelis, S. Peng, J. Popielarski, L. Popielarski, E. Pozdeyev, T. Russo, K. Saito, R.C. Webber, J. Weisend, M. Williams, Y. Yamazaki, A. Zeller, Y. Zhang, Q. Zhao
    FRIB, East Lansing, USA
  • D. Arenius, V. Ganni
    JLAB, Newport News, Virginia, USA
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The Facility for Rare Isotope Beams, a new national user facility funded by the U.S. Department of Energy Office of Science to be constructed and operated by MSU, is currently being designed to provide intense beams of rare isotopes to better understand the physics of nuclei, nuclear astrophysics, fundamental interactions, and applications for society. The FRIB driver linac can accelerate all stable isotopes to energies beyond 200 MeV/u at beam powers up to 400 kW. Key technical R&D programs include low-beta cw SRF cryomodules and highly efficient charge stripping using a liquid lithium film or helium gas. Physical challenges include acceleration of multiple charge states of beams to meet beam-on-target requirements, efficient production and acceleration of intense heavy-ion beams from low to intermediate energies, accommodation of multiple charge stripping scenarios and ion species, designs for both baseline in-flight fragmentation and ISOL upgrade options, and design considerations of machine availability, tunability, reliability, maintainability, and upgradability. We report on the FRIB accelerator design and developments with emphasis on technical challenges and progress.
slides icon Slides MOB01 [4.891 MB]  
MOC03 Operational Considerations for Future Multi-user RIB Facilities ISAC, TRIUMF, linac, cyclotron 41
  • A.C. Morton
    TRIUMF, Canada's National Laboratory for Particle and Nuclear Physics, Vancouver, Canada
  TRIUMF's ISAC is an ISOL-type RIB facility. RIB are produced in direct reactions of 480–500 MeV protons from TRIUMF's main cyclotron on thick targets in one of two production target stations. Like other such facilities, ISAC is only capable of serving a single RIB user at any given time, though simultaneous delivery of stable and radioactive beams to different experimental areas is possible. With the construction of ARIEL, the Advanced Rare-IsotopE Laboratory, ISAC will gain a second production front end. RIB will be produced by photofission on actinide targets using electrons from a new superconducting electron linac. This will give ISAC the ability to serve two RIB experiments concurrently with beams produced by different reaction mechanisms in separate target areas (with delivery of a third, stable, beam still possible). The shift from single-user to multi-user RIB operation will introduce significant new complexity to beam delivery, requiring new tools and techniques for beam time to be used efficiently. A first look at the potential operational requirements of a multi-user RIB facility will be discussed.  
slides icon Slides MOC03 [4.945 MB]  
PO04 The Darmstadt Multi-Frequency Digital Low Level RF System in Pulsed Application linac, cavity, low-level-rf, electron 58
  • R. Eichhorn, U. Bonnes, C. Burandt, M. Konrad, P.N. Nonn
    TU Darmstadt, Darmstadt, Germany
  • G. Schreiber, W. Vinzenz
    GSI, Darmstadt, Germany
  Funding: Work supported by DFG through CRC 634 and by the BMBF under 06 DA 9024 I
Triggered by the need to control the superconducting cavities of the S-DALINAC, the development of a digital low level RF control system was started several years ago. The chosen design proved to be very flexible since other frequencies than the original 3 GHz may be adapted easily: The system converts the RF signal coming from the cavity (e. g. 3 GHz) down to the base band using a hardware I/Q demodulator. The base band signals are digitized by ADCs and fed into a FPGA where the control algorithm is implemented. The resulting signals are I/Q modulated before they are sent back to the cavity. Meanwhile, this system has been successfully operated on 3 GHz, 6 GHz and 325 MHz cavities, on normal and superconducting cavities as well as in cw or pulsed mode. This contribution will focus on the 325 MHz version built to control a pulsed prototype test stand for the p-LINAC at FAIR and possible extensions to even lower frequencies. We will present the architecture of the RF control system as well as results obtained during operation.
PO05 Control and Information System for BARC – TIFR Superconducting LINAC Booster linac, booster, cryogenics, cryomodule 62
  • S. Singh
    BARC, Mumbai, India
  • J.N. Karande, V. Nanal, R.G. Pillay
    TIFR, Mumbai, India
  • P. Singh
    LEHIPA Project, Physics Group, Mumbai, India
  Superconducting LINAC booster is modular machine which consists of 7 cryomodules each consisting four quarter wave resonators and one superbuncher module. The control system is a mixed distributed control system. Geometrical distributed system architecture has been followed for RF control. RF control has four local nodes( RF LCS) each nodes catering to two cryostat. Two additional nodes are made for beam line system and cryogenics distribution system, making it a systematic distribution system. The system is developed on Linux operating system but the software is portable on Linux and Microsoft windows. The software is developed in two layers namely scanner and operator interface. Scanners interacts with the interface hardware. All scanners are developed in JAVA , which is very challenging job looking towards the feature of JAVA. Various issues regarding this were closely investigated and solved to overcome the deficiency of JAVA .A micro-controller based board has been developed for cryogenics line distribution system. Different subsystems of the control system has been developed independently. A complete integration of the system will be completed before Dec 2012.  
PO06 Extension of Superconducting LINAC Operation to Lighter Beams linac, cryogenics, target, instrumentation 65
  • V. Nanal, R.D. Deshpande, P. Dhumal, J.N. Karande, R. Palit, R.G. Pillay, M.S. Pose, S.M. Powale, C. Rozario, S.K. Sarkar, M.E. Sawant, A.A. Shinde, S.R. Sinha, A.N. Takke
    TIFR, Mumbai, India
  • S. Singh
    LEHIPA Project, Physics Group, Mumbai, India
  The superconducting LINAC booster at Pelletron Linac Facility(Mumbai), has been fully operational since July 2007. The Liquid Helium Refrigeration plant for the LINAC has been upgraded to enhance the refrigeration capacity to ~450 Watts at 4.5K without LN2 pre-cool, from the earlier capacity of ~300 Watts. All beam lines in new user halls have been commissioned and new experimental setups have been added. Several experiments have been carried out using beams of 12C, 16O, 19F, 28Si, 31P. The QWR cavity is designed for β=0.1 and hence it is difficult to accelerate lighter beams. Due to growing interest in studying Li induced reactions on fissile targets at energies higher than 55 MeV, we have recently accelerated Li beam using four cryostat modules. Starting with 40 MeV Li beam from the pelletron, 56 MeV beam was successfully delivered at target station for a test experiment.  
TUB02 New Developments at the Tandem Accelerators Laboratory at IFIN-HH ion, ion-source, tandem-accelerator, vacuum 118
  • D.G. Ghita, I.C. Calinescu, S. Dobrescu, N.M. Marginean, I.O. Mitu, T.B. Sava, B. Savu
    IFIN, Magurele- Bucuresti, Romania
  • Gh. Cata-Danil, M.S. Dogaru, M. Enachescu, M.M. Gugiu, P. Ionescu, D.V. Mosu, A. Pantelica, D. Pantelica, A. Petre, I. Popescu, C.A. Simion, C. Stan-Sion, M. Statescu, N.V. Zamfir
    Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest, Romania
  The upgrade of the 9 MV Tandem accelerator at IFIN-HH started in 2007. Remarkable improvements were done in the last 5 years that can be seen in the improved performance and reliability of the machine. Using original preparation techniques, some new beam species were tested for the first time in our laboratory. This opened the door to new experiments. A major improvement for the laboratory is the installation of 1 MV Tandetron accelerator dedicated to ultra-sensitive AMS measurements of C-14, Be-10, Al-26 and I-129, and 3 MV Tandetron accelerator dedicated to ion beam analysis. The main directions of the research activity in the laboratory will be shortly presented.  
slides icon Slides TUB02 [3.686 MB]  
TUB03 Terminal Voltage Stabilization of Pelletron Tandem Accelerator feedback, ion, acceleration, electron 124
  • N.R. Lobanov, M.C. Blacksell, P. Linardakis, D. Tsifakis
    Research School of Physics and Engineering, Australian National University, Canberra, Australia
  Funding: Heavy Ion Accelerators Education Investment Fund (EIF)
A conventional corona control terminal voltage stabiliser has been investigated on the ANU 14UD tandem accelerator. The fluctuations in the charge transport of electrostatic pelletron generator and their correlation with mechanical oscillations of the chains and terminal voltage ripple have been analysed. Emphasis is placed on the performance of the two-loop feedback system and on the tuning of this system to production of high energy-resolution beams. The transfer function for the corona regulation loop has been determined and examined. The system produces the beam position at the image slit of the 90 energy-analysing magnet with long-term stability equivalent to a few hundred volts rms fluctuation of the terminal voltage. The concept of novel fast control loop utilizing the high-frequency component from the image slits to control the voltage of the last gap of high-energy acceleration tube is discussed.
slides icon Slides TUB03 [4.693 MB]  
TUC04 Experiences and Lessons Learned at CARIBU with an Open 252Cf Source ion, monitoring, neutron 155
  • S.I. Baker, J.P. Greene, A. Levand, R.C. Pardo, G. Savard, R.C. Vondrasek, L.W. Weber
    ANL, Argonne, USA
  Funding: This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract No. DE-AC02-06CH11357.
The CARIBU (the CAlifornium Rare Ion Breeder Upgrade) project at ATLAS is based on the creation of beams of neutron-rich nuclei produced as fission fragments from the 3% fission branch that occurs naturally in the decay of Cf-252. These fission fragments are thermalized in ultrapure helium gas and turned into a charged beam for use by the ATLAS accelerator or ‘stopped’ beam experiments. This requires a very thin source, electroplated on a stainless steel or platinum backing so that the fission fragments escape into the helium gas and are efficiently thermalized and collected into an ion beam. The information learned from the successive use of two sources with strengths of 2 mCi and 100 mCi has now prepared us for the installation in mid-summer of a 500 mCi source recently produced by Oak Ridge National Laboratory. This paper will describe the radiological monitoring system and our experience with the two weak “open” sources which have exercised and tested our radiological controls, emissions monitors, and procedures for the CARIBU facility and the source transfer area.
slides icon Slides TUC04 [1.605 MB]