Keyword: ECR
Paper Title Other Keywords Page
MOC04 Commissioning Experience with CARIBU ion, background, ion-source, plasma 45
  • R.C. Vondrasek, S.I. Baker, P. Bertone, S. Caldwell, J.A. Clark, C.N. Davids, D. Lascar, A. Levand, K. Lister, R.C. Pardo, D. Peterson, D.R. Phillips, G. Savard, J.V. Schelt, M.G. Sternberg, T. Sun, B. Zabransky
    ANL, Argonne, USA
  The Californium Rare Ion Breeder Upgrade (CARIBU) of the ATLAS superconducting linac facility aims at providing low-energy and reaccelerated neutron-rich radioactive beams to address key nuclear physics and astrophysics questions. These beams are obtained from fission fragments of a Cf-252 source, thermalized and collected into a low-energy particle beam by a helium gas catcher, mass analyzed by an isobar separator, and charge bred with an ECR ion source to higher charge states for acceleration in ATLAS. Low-energy mass separated radioactive beams have been extracted, charge bred with a 10% efficiency, reaccelerated to 6 MeV/u, and delivered to GAMMASPHERE for beta decay studies. In addition, the Canadian Penning Trap (CPT) mass spectrometer has been relocated to the CARIBU low-energy beam line. Mass measurements on over 42 neutron rich nuclei have already been performed and additional measurements are underway. In addition, a new tape station for beta decay studies has just been commissioned. In this talk I will describe the current status of the overall CARIBU system and the plans for bringing the system into full operation and use in research with accelerated beams.  
slides icon Slides MOC04 [3.744 MB]  
TUC03 Laser Ablation of Solids into an Electron Cyclotron Resonance Ion Sources for Accelerator Mass Spectroscopy laser, ion, target, plasma 149
  • T. Palchan, F.G. Kondev, S.A. Kondrashev, C. Nair, R.C. Pardo, R.H. Scott, R.C. Vondrasek
    ANL, Argonne, USA
  • W. Bauder, P. Collon
    University of Notre Dame, Indiana, USA
  • J.F. Berg, T. Maddock, G. Palmotti, G. Youinou
    INL, Idaho Falls, Idaho, USA
  • G. Imel
    ISU, Pocatello, Idaho, USA
  • M. Paul
    The Hebrew University of Jerusalem, The Racah Institute of Physics, Jerusalem, Israel
  • M. Salvatores
    CEA Cadarache, Saint Paul Lez Durance, France
  Funding: This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract No. DE-AC02-06CH11357.
A project using accelerator mass spectrometry (AMS) is underway at the ATLAS facility to measure the atom densities of transmutation products present in samples irradiated in the Advanced Test Reactor at INL. These atom densities will be used to infer effective actinide neutron capture cross-sections ranging from Thorium to Califorium isotopes in different neutron spectra relevant to advanced fuel cycles. This project will require the measurement of many samples with high precision and accuracy. The AMS technique at ATLAS is based on production of highly-charged positive ions in an ECRIS followed by injection into a linear accelerator. We use a picosecond laser to ablate the actinide material into the ion source. We expect that the laser ablation technique will have higher efficiency and lower chamber contamination than sputtering or oven evaporation thus reducing ‘cross talk’ between samples. In addition a multi-sample holder/changer is part of the project to allow for a quick change between multiple samples. The results of off-line ablation tests and first results of a beam generated by the laser coupled to the ECR will be discussed as well as the overall project schedule.
slides icon Slides TUC03 [1.610 MB]  
THB03 Design Sudy for Front-End System at Rare Isotope Science Project (RISP) rfq, ion, emittance, simulation 207
  • E.-S. Kim
    KNU, Deagu, Republic of Korea
  • J. Bahng, J.G. Hwang, S.W. Jang
    Kyungpook National University, Daegu, Republic of Korea
  • B. Choi, D. Jeon, B. Kim, H. Kim, S.K. Kim
    IBS, Daejeon, Republic of Korea
  Heavy ion beams of 400 kW and 70 kW are generated at the RISP by in-flight and ISOL methods, respectively. Front-End system in the RISP consists of 28 GHz superconducting ECR-IS with 10 keV/u, LEBT with two-bends and a multi-harmonic buncher, a RFQ with 81.25 MHz and 300 keV/u, and MEBT with two re-bunchers. The design studies have been performed to optimize the beam and accelerator parameters to meet the required design goals. It is shown that the front-end simulations results can provide the two-charge state beams up to uranium to upstream linac with the required beam emittances. In this paper, we present the design results for the front-end system and on the beam dynamics.  
slides icon Slides THB03 [1.942 MB]