Indirect Technique in Nuclear Astrophysics: ANC

Tariq Al-Abdullah
Cyclotron Institute, TAMU
JINA-ANL 2007
Techniques to obtain reaction rates in Nuclear Astrophysics

- **Direct Measurements** (LUNA, LENA, DRAGON, . . .)
- **Radiative widths** for resonance rates
 - populate resonance state and measure decay
- **Coulomb dissociation**
 - applications with radioactive beams
- **Trojan Horse**
 - unique way to understand screening
- **Asymptotic Normalization Coefficients**
 - stable and radioactive beams
Direct radiative capture

Transition Amplitude:
\[M = \left\langle I^A_{Bp}(r_{Bp}) \right| O(r_{Bp}) \left| \psi_i^{(+)}(r_{Bp}) \right\rangle \]

Direct Radiative proton capture \[\sigma \propto \left| M \right|^2 \]

Low B.E.:
\[I^A_{Bp}(r_{Bp}) \stackrel{r_{Bp} > R_N}{\approx} C^A_{Bp} \frac{W_{-n_{l+\frac{1}{2}},l+\frac{1}{2}}(2\kappa_{Bp}r_{Bp})}{r_{Bp}} \]

ANC \Rightarrow \text{amplitude for tail of overlap function}

Find:
\[\sigma_{\text{capture}} \propto (C^A_{Bp})^2 \]
* Major sources of γ-ray lines:
 1- Following β-decays
 2- electron-positron annihilation.

* \(^{18}\text{F} \) emits positron \((T_{1/2} = 158 \text{ min}) \).

* \(^{18}\text{F} \) production may be influenced by:

\(^{17}\text{F}(p,\gamma)^{18}\text{Ne} \)?
The nuclear structure for 18O & 18Ne are similar.

The ANCs for 18O will be obtained from 13C(17O,18O)12C reaction.

Stable beam (17O) enables the ability to separate between interesting levels in 18O.
Experimental Setup

Elastic Scatterings:

Beams
\[^{17}\text{O} + ^{13}\text{C} \]
\[^{18}\text{O} + ^{12}\text{C} \]

Targets
100 μg/cm²

Transfer Reactions:

\[^{13}\text{C} (^{17}\text{O}, ^{18}\text{O}) ^{12}\text{C} \]

MDM Spectrometer

Oxford Detector
$J^\pi = (0^+_1, 2^+_1, 4^+_1, 2^+_2)$

- 2^+ states are combinations of $(d_{5/2})^2$ & $(d_{5/2}s_{1/2})$, T. Dehnhard, et al, PRC 13 (1976) 55.
- 4^+ & 0^+ have pure $(d_{5/2})^2$ configuration.

\begin{tabular}{|c|c|}
\hline
4.45 & 1^- \\
3.92 & 2^+ \\
3.63 & 0^+ \\
3.56 & 4^+ \\
1.98 & 2^+ \\
0 & 0^+ \\
\hline
\end{tabular}
* Comparison ANC vs S: The reaction is *peripheral*

* The ANCs are obtained using:

\[
\frac{C_{ij}^2}{b_{ij}^2} (^{18}O) = \frac{C_{ij}^2}{b_{ij}^2} (^{18}\text{Ne})
\]

* Charge Symmetry implies:

<table>
<thead>
<tr>
<th>J$^\pi$</th>
<th>Proton Orbital</th>
<th>18O B.E. [MeV]</th>
<th>C_{ij}^2 [fm$^{-1}$]</th>
<th>18Ne B.E. [MeV]</th>
<th>C_{ij}^2 [fm$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^+_1</td>
<td>d$_{5/2}$</td>
<td>8.04</td>
<td>7.33 ± 0.73</td>
<td>3.92</td>
<td>10.76 ± 0.97</td>
</tr>
<tr>
<td>2^+_1</td>
<td>d$_{5/2}$</td>
<td>6.06</td>
<td>2.06 ± 0.21</td>
<td>2.04</td>
<td>2.17 ± 0.24</td>
</tr>
<tr>
<td></td>
<td>s$_{1/2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4^+_1</td>
<td>d$_{5/2}$</td>
<td>4.48</td>
<td>1.05 ± 0.11</td>
<td>0.54</td>
<td>2.17 ± 0.22</td>
</tr>
<tr>
<td>2^+_2</td>
<td>d$_{5/2}$</td>
<td>4.12</td>
<td>0.49 ± 0.06</td>
<td>0.31</td>
<td>2.69 ± 0.32</td>
</tr>
<tr>
<td></td>
<td>s$_{1/2}$</td>
<td></td>
<td></td>
<td></td>
<td>127 ± 17</td>
</tr>
</tbody>
</table>
* **Direct Capture Reaction Rate (RADCAP)**:

\[N_A \langle \sigma v \rangle = 5.1 \tau^2 S_{\text{eff}} (T_9) e^{-\tau} \left[\frac{\text{cm}^3}{\text{mole.s}} \right] \]

* **Resonant Capture reaction rate:**

* DC >> RS for \(T_9 \leq 0.4 \)
 \(\Rightarrow\) DC dominates in ONe novae

* The uncertainty of DC rate is ±20%

* **Astrophysical Implications:**

 - Our rate is comparable with Bardayan & Garcia. *(Considered SLOW)*
 - If nova \(M = 1.25 \, M_\odot \), more \(^{18}F\) & \(^{18}O\).
 - If \(M \geq 1.35 \, M_\odot \), less \(^{18}F\).

Collaborators:

C. A. Gagliardi R. E. Tribble
L. Trache G. Tabacaru
X. Chen H. Clark
Y.-W. Lui Y. Tokimoto
C. Fu Y. Zhai
A. M. Mukhamedzhanov

Cyclotron Institute, Texas A&M University

F. Carstoiu.
Institute of Nuclear Physics and Engineering, Romania

N. Timofeyuk
University of Surry, UK
Asymptotic Normalization Coefficients (ANC)

A. Mukhamedzhanov et al., PRC 56, 1302 (1997)

Direct Capture Reactions for charged particles:
- The binding energy of the captured particle is low.
- The capture occurs through the tail of the overlap function.
- The Amplitude of the tail is given by the ANCs.

For a Transfer reaction \((X+A \rightarrow Y+B)\):
- The DWBA amplitude:
 \[
 M (E) = \langle \chi_f^{(-)} I_{A,p}^B (r_{A,p}) \mid \Delta V \mid I_{Y,p}^X (r_{Y,p}) \chi_i^{(+)} \rangle
 \]
- The reaction cross section is related to the DWBA by:
 \[
 \frac{d \sigma}{d \Omega} = \sum_{l_B j_B l_X j_X} S_{A a l_B j_B} S_{Y a l_X j_X} \sigma_{l_B j_B l_X j_X}^{DWBA}
 \]
- For a peripheral reaction \(r > R_N\),
 \[
 I_{A,p}^B (r) = \sqrt{S_{A,p}} \varphi (r) \quad \Rightarrow \quad S = \frac{C^2}{b^2}
 \]