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What Are White Dwarf Stars

*Endpoint of evolution for most stars

Homogeneous
—Narrowfass dist(ibuﬁbn »
—Chenmiically pure ldyers .

Uncomplicated **
—Strueture
—Composition

—Evolution dominated by coollng.r '
(oldest=coldest) 3

They Shed Their Complexity!

-




... and Why Should I Care?

e Representative (and personal)
— 98% of all stars, including our sun, will become one

— Archeological history of star formation in our galaxy
e A way to find Solar Systems dynamically like ours

e Exploration of Extreme physics

— Matter at extreme densities and temperatures
e 60% of the mass of the Sun compressed into star
the size of the Earth

— Chance to study important and exotic physical
processes: plasmon neutrinos, internal crystallization




Most Importantly ....

e When we talk about white dwart interiors,
we are talking about neutron star crusts ...

Always remember, a neutron star is just a failed white
dwarf, or for purposes of this meeting ....
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Complex Pulsators
Probe interior physics

Ui

Asteroseismology: Using normal modes of
pulsating WDs to study extreme physics
and time itself

Light Curves of G117-B15A (Top 2 — HET)
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WANTED!
DEAD

(Stars)
OR
ALIVE
(Planets)

A substantially larger sample

of angry pulsating white dwarf stars,
last seen at APO, headed east to McDonald...
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Fig.2. The =10 range of theoretical internal chemical profiles for
a 0.65 M; white dwarf model using the NACRE rate for the
2C(a, Y)'%0 reaction (Angulo et al., 1999, shaded area), along with
profiles scaled to the optimal central oxygen mass fraction derived for
GD 358 (upper hashed area) and CBS 114 (lower hashed area) with
the corresponding values for the 2C(a, ¥)'°O rate.
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Sources of energy loss in WDs
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Calculate the ages of the coolest
white dwarf stars:
White Dwart Cosmochronology

e (Critical theoretical uncertainties for
dating the coolest WDs

— QOuter layers
e Convection and degeneracy control throttle

— Deep interiors
e Neutrino emission in the hot stars
e Crystallization and phase separation in coolest

e Compare with observed distribution, and
repeat the cycle... and also...




The Disk Luminosity Function

Fontaine, Brassard, & Bergeron (2001)
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The Disk vs M4: Globular clusters are
older than the disk ....

Figure® The solid histogram shows the lumi

rected for incompleteness. The dashed histogram shows the raw counts. The solid points
indicate the disk LF from Leggett, Ruiz & Bergeron (1998), with a V-band distance
modulus of gy = 12.51 for M4 applied. The vertical normalization is arbitrary—the
comparison 15 designed to demonstrate that the M4 luminosity function extends be-
yond the turnover in the disk LF, a clear indication that M4 is older than the galactic

LY 1
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White Dwarf Stars in Clusters

 Explore white dwart cooling ages as
compared to main sequence 1sochrone ages

* Open clusters help 1n establishing
constraints on disk age

e Older open clusters sample critical physics
of white dwart cooling




White Dwarf Stars in Clusters

Explore white dwart cooling ages as
compared to main sequence 1sochrone ages

Open clusters help in establishing
constraints on disk age

Older open clusters sample critical physics
of white dwart cooling

Globular Clusters: Finally, we can 1solate
masses and explore the physics!




Comparing
Theoretical
models:
new(er)
opacities,

interior EOS and
atmospheric
boundary
conditions

Hansen & Liebert
(2003)

\ge (Gyr)

Figure 18 The solid curve shows the cooling ofa 0.6 A5, model from Hansen (1990)
The open points are from Salarns et al. (2000), for a 0.61 M, fully consistent model
The filled points are from Fontaine etal (2001). The open stars points are from Chabrier
et al. (2001), which, while still not a fully self-consistent code, at least nses L — I
relations based on nongray atmosphere models, and so should be more accurate than
previous calculations in this vein. The extensions of the Salaris points indicate the extra
delay in the cooling if they take into account the release of separafion energy upon
crystallization.




Fontaine 2001 models and Winget et al. 2008 models
0.5 Msun
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Fontaine 2001 models and Winget et al. 2008 models
0.8 Msun
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Conclusions from model comparisons

 Mass —radius is consistent for all groups

( Chabrier et al. 2000 over Lamb
& Van Horn 1975 for interiors and Saumon
Chabrier & Van Horn 1993 over Fontaine , Graboske
& Van Horn 1977 for the envelope) do not produce
(presently) observable differences in the models.

— Improved condition
is not as important as has been claimed in the
literature ... it produces no observable differences
until bolometric luminosities below the largest
magnitude globular cluster stars




Fixing the WD
evolutionary
tracks in the

CMD by
simultaneously
fitting the
main sequence
and the WDs

gives Z, (m-M)

and E

Data: proper motion screened sample from Richer et al. 2008, AJ, 135,2131
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DA DB c-core model age as a function of F§14W magnitude for a range of masses for NGC 6397
with (m-M)=12.49 and E=0.22, the ohserved white dwarf cutoff at 27.6 is indicated by a vertical line.
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Flgure 2: NGC 6397 white dwarfs with DA and DB evolutionary tracks with
Bergeron-Kowalski Colors and E=0.22,(m-M)=12.49
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NGC 6397 White Dwarfs with DA Evolutionary Tracks

Bergeron-Kowalski Colors and E=0.22,(m-M)=12.49
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NGC 6397 White Dwarfs with DA Evolutionary Tracks
Bergeron-Kowalski Colors and E=0.22,(m-M)=12.49
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FS14W

NGC 6397 whate dwarfs with 0.5Msun evolutionary tracks with

DA and Mixed (loeM{He)/M(H)=A) Bergeron-Kowalski Colors and E=0.22,(m-M)=12.49
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F814W

NGC 6397 White Dwarfs with DA Evolutionary Tracks
Bergeron-Kowalski Colors and E=0.22,(m-M)=12.49
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This diagram (and previous ones) determines
the low-mass limit for WDs at the “clump”= 0.5 Msun




NGCE397 Hubble ACS

Luminosity Function for NGC 6397 proper motion screened WD sample




What physics might be relevant near
the peak of theLuminosity Function
(the “clump” in the CMD)?

* Convective Coupling: The surface convection
zone reaches the degeneracy boundary,
reducing the insulation of the envelope

e Crystallization: lons crystallize with attendant

latent heat and phase separation expected
from theory
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Ratio of Coulomb Energy to lon
Thermal Energy

1 (Ze)?
kT R

T- = 2.692 X 10322 N ;/sT—1

What is the value of Gamma at and near the “clump” in the
observed CMD, or equivalently, the value of Gamma at the peak of
the Luminosity Function?

F(peak) =194 (carbon) = 313 (oxygen)

F(rise) = 182 (carbon) = 291 (oxygen)
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Conclusions from NGC 6397

Confirm that crystallization occurs
Confirm that Debye cooling occurs
We can measure the | for crystallization

We find the first empirical evidence that

Van Horn’s 1968 prediction is correct:
Crystallization is a first order phase transition

Low metallicity clusters may not produce significant
O in cores of some of the 0.5Msun stars ...

He mixing combined with CIA opacities explains the
mysterious “blue hook.”



Observational and theoretical futures for EoS
constraints and other physics from white dwarfs

 More fields for NGC 6397 and other globular clusters

 More clusters: globular and rich, old, open clusters
different white dwarf and masses and Z, C/O =
C/0(Z)?

e SDSS => enormous increase in the disk and halo
white dwarfs

e SDSS => more asteroseismology of high (near
Chandra mass) and (He-core) low mass white dwarf
stars

 Measurements of evolutionary changes allows study
of particle physics aspects and general thermal
properties



Observational and theoretical futures for EoS
constraints and other physics (cont’d)

Measurements of evolutionary changes allows study
of particle physics aspects and general thermal
properties

Bayesian analysis of data with different classes of
theoretical models for these large observational
samples

New opacity calculations for warm and cool white
dwarfs

Your list goes here ....
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The End

Thank you




