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phase diagrams are labeled by intensive variables

in QCD: T ,Nf quark masses, Nf chemical potentials

Ω(T , µi ; mi )
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Chiral Symmetry
Center symmetry

chiral symmetry

separation into sectors of ’light’ and ’heavy’ quarks

LQCD = Llight + Lheavy

Llight = −1

4
G a
µνGµν

a + q̄(iγµDµ −Mq)q; Lheavy = Q̄(iγµDµ −MQ )Q

light quarks (mu,md ,ms = 0)

left and right handed quark fields

qL,R =
1

2
(1∓ γ5)q

L0
light invariant under U(3)L × U(3)R

qL,R → e−iθL,Rλa qL,R

conserved Noether currents

JµL,R = q̄L,Rγ
µλaqL,R , ∂JµL,R = 0

vector and axial-vector current

JµV ,a = JµL,a + JµR,a = q̄γµλaq

JµA,a = JµL,a − JµR,a = q̄γµγ5λaq

charges

Qa
V =

Z
d3x q†(x)λaq(x)

Qa
A =

Z
d3xq†(x)γ5λaq(x)

commute with H0
QCD

[Qa
V ,A,H

0
QCD ] = 0Jochen Wambach Phases of Strongly Interacting Matter



QCD
QCD inspired models

Beyond mean field
Summary

Chiral Symmetry
Center symmetry

spontaneous chiral symmetry breaking
’Wigner-Weyl’ realisation:

Qa
V |0〉 = Qa

A|0〉 = 0

→ parity doublets in the hadron spectrum

not observed!

’Nambu-Goldstone’ realisation:

U(3)L × U(3)R ∼
SU(3)V × SU(3)A × U(1)B × U(1)A

Qa
V |0〉 = 0; Qa

A|0〉 6= 0

SU(3)V × SU(3)A → SU(3)V

→ massless ’Goldstone’ bosons

|πa〉 = Qa
A|0〉

H0
QCD |πa〉 = Qa

AH0
QCD |0〉 = 0

quarks condense into scalar quark-antiqark
pairs

〈0|q̄q|0〉 ≡ 〈q̄q〉 ≡ 〈σ〉 6= 0

formal connection:

Pa(x) = q̄(x)γ5λaq(x)

[Qa
A,Pb] = −δabq̄q

→ Qa
A|0〉 6= 0→ 〈q̄q〉 6= 0

Goldstone’s theorem implies

〈0|JµA,a|πb(p)〉 = −iδabFπpµe−ipx

Fπ = 92.4± 0.3 MeV

Jochen Wambach Phases of Strongly Interacting Matter
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Chiral Symmetry
Center symmetry

Z(3) symmetry

QCD partition function:

Z(V ,T , µ) =

Z
D[q, q̄,Aa

µ] exp

"
−
Z 1/T

0

dτ

Z
V

d3x
“
LE

QCD − iµq†q
”#

boundary conditions:

Aµ(τ + 1/T , ~x) = Aµ(τ,~x); q(τ + 1/T , ~x) = −q(τ,~x); Aµ ≡ (λa/2)Aa
µ

QCD Lagrangian invariant under local transformations: g(x) = e igs Θa(x)λa/2

q(x)→gq(x) = g(x)q(x)

Aµ(x)→gAµ(x) = g(x)

„
Aµ(x) +

i

gs
∂µ

«
g†(x)

boundary conditions put constraints on the allowed gauge transformations

Jochen Wambach Phases of Strongly Interacting Matter
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Chiral Symmetry
Center symmetry

Z (3) symmetry

g(τ + 1/T , ~x) = hg(τ,~x); h ∈ SU(3) constant ′twist′ matrix

then
gAµ(τ + 1/T , ~x) = hgAµ(τ,~x)h†

since gAµ still has to obey a periodic boundary condition

h = z1; z = exp(2πin/3), n = 1, 2, 3

for quarks

gq(τ + 1/T , ~x) = g(τ + 1/T , ~x)q(τ + 1/T , ~x) = −zg(τ,~x)q(τ,~x) = −z gq(τ,~x)

antiperiodic boundary condition only allows for z = 1

the center symmetry disappears

still useful as an approximate symmetry of QCD !
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Chiral Symmetry
Center symmetry

’Static’ quarks

use ’static quarks’ to probe the physics of the gauge fields

infinitely heavy ’test’ quarks are described by a ’Polyakov loop’ (closed Wilson
loop around the periodic τ direction)

L(~x) = Trc

»
P exp

„
i

Z β

0

dτA4(τ,~x)

«–
complex scalar field

transforms non-trivially under Z(3)

gL(~x) = zL(~x)

Polyakov loop expectation value

〈L(~x)〉 =
1

ZYM

Z
D[Aa

µ]L(~x) exp(−SE
YM ) = exp(−βFQ (~x))

measures the free energy of a static test quark at position ~x .

small T color confined → FQ =∞ and 〈L〉 = 0

high T quarks and gluons deconfined → FQ finite and 〈L〉 = L0 6= 0

at high T the Z(3) symmetry is spontaneously broken!

Jochen Wambach Phases of Strongly Interacting Matter
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The NJL model
The PNJL model
The PQM model

Z(3) center symmetry of SU(3)c exact for infinitely heavy quarks

SU(3)L × SU(3)R exact for massless mu,md ,ms

→ phase diagram (Pisarski, Wilczek)
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The NJL model
The PNJL model
The PQM model

The NJL model

only chiral symmetry aspects

QCD current-current coupling:

Sint =
1

2

Z
d4xd4y Jµa (x)g 2

s Dab
µν(x − y)Jνb (x); Jµa = q̄iγµtaq

at large distances (small momenta k < Λ)

Dab
µν(k) = δab[Gcθ(Λ− k) + · · · ]

„
δµν −

kµkν
k2

«

Lint = Gc Ja
µ(x)Jµa (x)→Fierz G [(q̄q)2 + (q̄iγ5~τq)2] . . .

NJL model (Nf = 2)

L = q̄(i∂/−mq)q + G [(q̄q)2 + (q̄iγ5~τq)2]

Jochen Wambach Phases of Strongly Interacting Matter
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Thermodynamics

partition function:

Z(V ,T , µ) = e−ΩV/T = Tr exp

„
−β
Z

V

d3x (HNJL − µq̄†q)

«
with:

HNJL = q̄(−~γ · ∇+ m0)q − G [(q̄q)2 + (q̄γ5~τq)2]

thermodynamic potential (per volume):

Ω(T , µ) = − lim
V→∞

T

V
lnZ(V ,T , µ); Ω = ε− Ts − µn

EoS:

p = −Ω; s = − ∂Ω

∂T
; n = −∂Ω

∂µ
; ε = Ts − p + µn; 〈q̄q〉 = − ∂Ω

∂m0

(static) susceptibilities:

χµµ = −∂
2Ω

∂µ2
; χTT = − ∂

2Ω

∂T 2
; χµT = − ∂2Ω

∂µ∂T
; χm = − ∂

2Ω

∂m2
0

Jochen Wambach Phases of Strongly Interacting Matter
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Mean field approximation

linearization of the Lagrangian:

L = L0 + δL → Ω0(T , µ) + δΩ(T , µ)

q̄q = 〈q̄q〉+ δσ; δσ = q̄q − 〈q̄q〉

L0 = q̄(i∂/− (m0 − 2G 〈q̄q〉)| {z }
m=m0+Σ(m)

)ψ − G 〈q̄q〉2

grand potential:

Ω0(T , µ; m) =
(m −m0)2

4G
− 12

Z
d3p

(2π)3

h
Ẽp + T ln

“
1 + exp

“
− Ep−µ

T

””
+ T ln

“
1 + exp

“
− Ep +µ

T

””i

Jochen Wambach Phases of Strongly Interacting Matter
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evolution of the chiral order parameter

Ω0(T , µ; m) → ∂Ω0

∂m
= 0
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critical endpoint (CEP)
second-order phase transition:

 0

 50

 100

 150

 200
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T
 [M

eV
]

µ [MeV]

1st order
crossover

CEP

at the CEP chiral and number suscept.
diverge!

χm, χµµ ≡ χq →∞
universality class: 3D Ising model

χq ∼| g − gc |−ε; g = T , µ

ε = 0.78; 2/3 (mean field)

isothermal compressibility:

κT ≡
1

V

„
∂V

∂P

«
|T ,µ

=
χq

n2
q

→ χq large system easy to compress
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Abbildung 6.6: 3-dimensionaler Plot der Spektralfunktion der Quarkanzahl-
Suszeptibilität in der q0 − |!q|-Ebene am CEP

welche am CEP aufgrund des dort vorliegenden Phasenübergangs zweiter Ordnung
divergieren [11], stellen gerade den q-Grenzwert der Responsefunktionen dar [12].

χab = lim
|!q|→0

χab(q0 = 0, |!q|) (6.18)

Daher ist es naheliegend, dass am kritischen Punkt auch eine Divergenz der Spek-
tralfunktion der Quarkanzahl-Suszeptibilität bei q0 = 0, |!q| = 0 auftritt. Die 3-dimensionale
Darstellung in Abb. 6.6 verdeutlicht dies. Die Divergenz im Ursprung ist erkennbar und
besitzt die gleiche Form wie die der Sigma Spektralfunktion.
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Abbildung 6.4: 3-dimensionale Plots der Sigma Spektralfunktion in der q0 − |!q|-Ebene
am CEP (oben) und bei (T = 200 MeV, µ = 188 MeV, unten)
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The PQM model

physical nature of the CEP

Ginzburg-Landau functional:

F (T , n, σ) = Ω(T , µ,m)− µn −mσ

F (T , n, σ) =

Z
d3x

ha

2
(∂iσ)2 + b∂iσ∂i n +

c

2
(∂i n)2 + V (σ, n)

i
V (σ, n) =

A

2
σ2 + Bσn +

C

2
n2 + · · ·

CEP: AC = B2
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Abbildung 4.6: Thermodynamisches Potential Ω̄ am CEP in Abhängigkeit von ρ (links)
und s (rechts). Oben sind Konturplots mit σ als zusätzliche Ordnungsdichte abgebildet.
Je dunkler die Farbe, desto niedriger ist das Potential

14

flat direction: σ/n = −B/A = −C/B

χm ∼
TC

∆
, χq ∼

TA

∆
; ∆ = AC − B2

diverge at the CEP (∆ = 0)

not sufficient: A < C or A > C?

for µ→ 0 mixing vanishes, i.e. B → 0

soft mode is σ hence A < C

CEP not liquid-gas transition! (A > C)

implications for dynamical universality class!
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1st-order region and spinodals             Phase diagram and spinodals  

2-order  

TCP 

1st 

mixed phase -  Maxwell construction 

spinodal lines:

„
∂P

∂V

«
T

= 0 : isothermal„
∂P

∂V

«
S

= 0 : isentropic

„
∂P

∂V

«
T

=

„
∂P

∂V

«
S

+
T

cV

»„
∂P

∂T

«
V

–2
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The NJL model
The PNJL model
The PQM model

quark number susceptibility

deviation from equilibrium, large fluctuations induced by instabilities

at first-order point (A,D): χq ≡ χµµ finite

at isothermal spinodal point (B,C): χq diverges and changes sign„
∂P

∂V

«
T

= −
n2

q

V

1

χq

in the unstable region (B-C): χq is finite and negative

Jochen Wambach Phases of Strongly Interacting Matter
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The PNJL model
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small large model dependence in the location of the CEP!
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The PNJL model

Polyakov loop variable:

Φ(x) ≡ 1

Nc
〈L(x)〉 → φ =

1

3
Trc exp

»
iA4

T

–
Lagrangian:

LPNJL = q̄(iD/(φ)−mq)q + G [(q̄q)2 + (q̄iγ5~τq)2]− U(φ, φ∗)

covariant derivative:
D/(φ) = ∂/− iγ4A4(φ)

effective potential:

U(φ, φ∗)/T 4 = −b2(T )

2
φ∗φ− b3

6

“
φ3 + φ∗3

”
+

b4

4
(φ∗φ)2

with
b2(T ) = a0 + a1

`
T0
T

´
+ a2

`
T0
T

´2
+ a3

`
T0
T

´3

T0 = 270MeV a0 a1 a2 a3 b3 b4

6.75 -1.95 2.625 -7.44 0.75 7.5

Table 4.1: Parameter set used in [579] for the Polyakov loop potential (4.73, 4.74).

There is a subtlety about the Polyakov loop field, φ, and its conjugate, φ∗, in the presence of
quarks. At zero chemical potential we have φ = φ∗, i.e. the field φ is real, it serves as an order
parameter for deconfinement and a mean-field calculation is straightforward. At non-zero quark
chemical potential, Z(3) symmetry is explicitly broken and φ differs from φ∗ while their thermal
expectation values 〈φ〉 and 〈φ∗〉 remain real [581]. A detailed analysis of the stationary points of
the action under these conditions requires calculations beyond mean field which will be reported
elsewhere [582]. We proceed here, as in [579], by introducing Φ ≡ 〈φ〉 and Φ̄ ≡ 〈φ∗〉 as new
independent field variables which replace φ and φ∗ in Eq. (4.73). This approximate prescription
corresponds to a modified mean-field scheme which can account for the difference between Φ
and Φ̄ in the presence of quarks. The more accurate treatment is under way.

Using standard bosonization techniques, we introduce the auxiliary bosonic fields σ and #π for
the scalar-isoscalar and pseudoscalar-isovector quark bilinears in Eq. (4.70). The expectation
value of the σ field is directly related to the chiral condensate by 〈σ〉 = G〈ψ̄ψ〉 and the gap
equation becomes

m = m0 − 〈σ〉 . (4.75)

Note that 〈σ〉 is negative in our representation, and the chiral (quark) condensate is 〈ψ̄ψ〉 =
〈ψ̄uψu + ψ̄dψd〉.
Before passing to the actual calculations, we summarize basic assumptions behind Eq. (4.70)
and comment on limitations to be kept in mind. The PNJL model reduces gluon dynamics to a)
chiral point couplings between quarks, and b) a simple static background field representing the
Polyakov loop. This picture can be expected to work only within a limited range of temperatures.
At large T , transverse gluons are known to be thermodynamically active degrees of freedom,
but they are ignored in the PNJL model. To what extent this model can reproduce lattice QCD
thermodynamics is nonetheless a relevant question. We can assume that its range of applicability
is, roughly, T ≤ (2 − 3)Tc, based on the conclusion drawn in ref. [583] that transverse gluons
start to contribute significantly for T > 2.5Tc.

4.5.3 Parameter fixing

The parameters of the Polyakov loop potential U are fitted to reproduce the lattice data [584]
for QCD thermodynamics in the pure gauge sector. Minimizing U(Φ, Φ̄, T ) one has Φ = Φ̄ and
the pressure of the pure-gauge system is evaluated as p(T ) = −U(T ) with Φ(T ) determined
at the minimum. The entropy and energy density are then obtained by means of the standard
thermodynamic relations. Fig. 4.16(a) shows the behaviour of the Polyakov loop as a function of
temperature, while Fig. 4.16(b) displays the corresponding (scaled) pressure, energy density and
entropy density. The lattice data are reproduced extremely well using the ansatz (4.73,4.74), with
parameters summarized in Tab. 4.1. The critical temperature T0 for deconfinement appearing
in Eq. (4.74) is fixed at T0 = 270 MeV in the pure gauge sector.

The pure NJL model part of the Lagrangian (4.70) has the following parameters: the “bare”
quark mass m0, a three-momentum cutoff Λ and the coupling strength G. We fix them by

163

(a)

1 2 3 4
T!Tc

1

2

3

4

Ε,
s,
p
"s
ca
le
d
#

Ε!T4

3!4s!T3

3p!T4

(b)

Figure 4.16: (a): Using the fit of the Polyakov loop (dotted line) to lattice results taken from
[585] in the pure gauge sector (empty symbols), the PNJL model predicts the Polyakov loop
behaviour as a function of temperature in the presence of dynamical quarks (solid line). This
prediction is compared to lattice data in two flavours (full symbols) taken from [586]. (b): Scaled
pressure, entropy density and energy density as functions of the temperature in the pure gauge
sector, compared to the corresponding lattice data taken from Ref. [165].

Λ [GeV] G[GeV−2] m0[MeV]

0.651 10.08 5.5

|〈ψ̄uψu〉|1/3[MeV] fπ[MeV] mπ[MeV]

251 92.3 139.3

Table 4.2: Parameter set used for the NJL model part of the effective Lagrangian (4.70), and
the resulting physical quantities. These values of the parameters yield a constituent quark mass
m = 325 MeV.

reproducing the known chiral physics in the hadronic sector at T = 0: the pion decay constant
fπ, the chiral condensate |〈ψ̄uψu〉|1/3 and the pion mass mπ are evaluated in the model and
adjusted at their empirical values. The results are shown in Tab. 4.2.

4.5.4 Thermodynamics at finite chemical potential

General features

We now extend the model to finite temperature and chemical potentials using the Matsubara
formalism. We consider the isospin symmetric case, with an equal number of u and d quarks
(and therefore a single quark chemical potential µ). The quantity to be minimized at finite

164
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The PNJL model

Polyakov loop variable:

Φ(x) ≡ 1

Nc
〈L(x)〉 → φ =

1

3
Trc exp

»
iA4

T

–
Lagrangian:

LPNJL = q̄(iD/(φ)−mq)q + G [(q̄q)2 + (q̄iγ5~τq)2]− U(φ, φ∗)

covariant derivative:
D/(φ) = ∂/− iγ4A4(φ)

effective potential:

U(φ, φ∗)/T 4 = −b2(T )

2
φ∗φ− b3

6

“
φ3 + φ∗3

”
+

b4

4
(φ∗φ)2

with
b2(T ) = a0 + a1

`
T0
T

´
+ a2

`
T0
T

´2
+ a3

`
T0
T

´3

T0 = 270MeV a0 a1 a2 a3 b3 b4

6.75 -1.95 2.625 -7.44 0.75 7.5

Table 4.1: Parameter set used in [579] for the Polyakov loop potential (4.73, 4.74).

There is a subtlety about the Polyakov loop field, φ, and its conjugate, φ∗, in the presence of
quarks. At zero chemical potential we have φ = φ∗, i.e. the field φ is real, it serves as an order
parameter for deconfinement and a mean-field calculation is straightforward. At non-zero quark
chemical potential, Z(3) symmetry is explicitly broken and φ differs from φ∗ while their thermal
expectation values 〈φ〉 and 〈φ∗〉 remain real [581]. A detailed analysis of the stationary points of
the action under these conditions requires calculations beyond mean field which will be reported
elsewhere [582]. We proceed here, as in [579], by introducing Φ ≡ 〈φ〉 and Φ̄ ≡ 〈φ∗〉 as new
independent field variables which replace φ and φ∗ in Eq. (4.73). This approximate prescription
corresponds to a modified mean-field scheme which can account for the difference between Φ
and Φ̄ in the presence of quarks. The more accurate treatment is under way.

Using standard bosonization techniques, we introduce the auxiliary bosonic fields σ and #π for
the scalar-isoscalar and pseudoscalar-isovector quark bilinears in Eq. (4.70). The expectation
value of the σ field is directly related to the chiral condensate by 〈σ〉 = G〈ψ̄ψ〉 and the gap
equation becomes

m = m0 − 〈σ〉 . (4.75)

Note that 〈σ〉 is negative in our representation, and the chiral (quark) condensate is 〈ψ̄ψ〉 =
〈ψ̄uψu + ψ̄dψd〉.
Before passing to the actual calculations, we summarize basic assumptions behind Eq. (4.70)
and comment on limitations to be kept in mind. The PNJL model reduces gluon dynamics to a)
chiral point couplings between quarks, and b) a simple static background field representing the
Polyakov loop. This picture can be expected to work only within a limited range of temperatures.
At large T , transverse gluons are known to be thermodynamically active degrees of freedom,
but they are ignored in the PNJL model. To what extent this model can reproduce lattice QCD
thermodynamics is nonetheless a relevant question. We can assume that its range of applicability
is, roughly, T ≤ (2 − 3)Tc, based on the conclusion drawn in ref. [583] that transverse gluons
start to contribute significantly for T > 2.5Tc.

4.5.3 Parameter fixing

The parameters of the Polyakov loop potential U are fitted to reproduce the lattice data [584]
for QCD thermodynamics in the pure gauge sector. Minimizing U(Φ, Φ̄, T ) one has Φ = Φ̄ and
the pressure of the pure-gauge system is evaluated as p(T ) = −U(T ) with Φ(T ) determined
at the minimum. The entropy and energy density are then obtained by means of the standard
thermodynamic relations. Fig. 4.16(a) shows the behaviour of the Polyakov loop as a function of
temperature, while Fig. 4.16(b) displays the corresponding (scaled) pressure, energy density and
entropy density. The lattice data are reproduced extremely well using the ansatz (4.73,4.74), with
parameters summarized in Tab. 4.1. The critical temperature T0 for deconfinement appearing
in Eq. (4.74) is fixed at T0 = 270 MeV in the pure gauge sector.

The pure NJL model part of the Lagrangian (4.70) has the following parameters: the “bare”
quark mass m0, a three-momentum cutoff Λ and the coupling strength G. We fix them by
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Figure 4.16: (a): Using the fit of the Polyakov loop (dotted line) to lattice results taken from
[585] in the pure gauge sector (empty symbols), the PNJL model predicts the Polyakov loop
behaviour as a function of temperature in the presence of dynamical quarks (solid line). This
prediction is compared to lattice data in two flavours (full symbols) taken from [586]. (b): Scaled
pressure, entropy density and energy density as functions of the temperature in the pure gauge
sector, compared to the corresponding lattice data taken from Ref. [165].

Λ [GeV] G[GeV−2] m0[MeV]

0.651 10.08 5.5

|〈ψ̄uψu〉|1/3[MeV] fπ[MeV] mπ[MeV]

251 92.3 139.3

Table 4.2: Parameter set used for the NJL model part of the effective Lagrangian (4.70), and
the resulting physical quantities. These values of the parameters yield a constituent quark mass
m = 325 MeV.

reproducing the known chiral physics in the hadronic sector at T = 0: the pion decay constant
fπ, the chiral condensate |〈ψ̄uψu〉|1/3 and the pion mass mπ are evaluated in the model and
adjusted at their empirical values. The results are shown in Tab. 4.2.

4.5.4 Thermodynamics at finite chemical potential

General features

We now extend the model to finite temperature and chemical potentials using the Matsubara
formalism. We consider the isospin symmetric case, with an equal number of u and d quarks
(and therefore a single quark chemical potential µ). The quantity to be minimized at finite
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temperature at zero chemical potential: comparison between the PNJL model prediction [579]
(full line), the standard NJL model result (dashed) and lattice results corresponding to Nt = 4
and Nt = 6. Lattice data are taken from [611].
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Lagrangian:

LPQM = q̄ [iD/(φ)− G(σ + iγ5~τ~π)] q +
1

2
(∂µσ)2 +

1

2
(∂µ~π)2−U(σ, ~π)−U(φ, φ∗)

U(σ, ~π) =
λ

4

“
σ2 + ~π2 − v 2

”2

− cσ

thermodynamic potential:

Ω0(T , µ; m) = U(φ, φ∗) + U(σ) + Ωq̄q
0

Nf and µ-dependence of T0

T0(Nf , µ) = Tτe−1/ατ b(µ)

b(µ) =
1

6π
(11Nc − 2Nf )− 16

π
Nf

µ2

T 2
τ

Nf 0 1 2 2 + 1 3
T0 [MeV] 270 240 208 187 178

Table 4.3: The critical Polyakov-loop temperature T0 for Nf massless flavors.

Massive flavors lead to suppression factors of the order T 2
0 /(T 2

0 + m2) in the β-function. For
2 + 1 flavors and a current strange quark mass ms ≈ 150 MeV one obtains T0(2 + 1) = 187
MeV. We remark that the estimates for T0(Nf ) have an uncertainty at least of the order ±30
MeV. This uncertainty comes from the perturbative one-loop nature of the estimate and the
poor accounting for the temperature effects. For example, with the two-loop coefficient (4.95)
and restricting on Nf = 2 yields T0(2) = 192 MeV. Fortunately, the results only show a mild T0

dependence.

There are no double counting effects due to the inclusion of the Dirac determinant in the PQM
and the independent adjustment of the Polyakov-loop model parameters: the Polyakov-loop
potential parameters, in particular b2, genuinely depend on the running coupling, which is
changed in the presence of quarks. This effect is modeled by changing T0 → T0(Nf ) as defined
in (4.97). The direct contributions to the grand potential which originate from the fermionic
determinant Ωq̄q, (4.87), are not governed by this redefinition, and have to be added separately.

A second step implements a µ-dependent running coupling in the b2 coefficient, analogous to
the Nf -dependence discussed above. Indeed, one can argue that this is a minimal necessary
generalization: without a µ-dependent b2 the confinement-deconfinement phase-transition has
a higher critical temperature than the chiral phase transition at vanishing chemical potential.
This is an unphysical scenario because QCD with dynamical massless quarks in the chirally
restored phase cannot be confining since the string breaking scale would be zero.

As for the Nf -dependence one can resort to perturbative estimates, by allowing for an additional
µ-dependent term in the one-loop coefficient b,

b(µ) =
1
6π

(11Nc − 2Nf )− bµ
µ2

T 2
τ

. (4.98)

This simple choice of the µ-dependent part can be motivated by using HDL/HTL results on the
effective charge [602]

α(p, T, µ) =
α(p)

1 + m2
D/p2

, (4.99)

with the Debye mass m2
D = (Nc/3+Nf/6)g2T 2+Nf/(2π2)g2µ2. The µ-derivative of the modified

coupling, µ∂µα = bµµ2/p2, can be related to a momentum derivative p∂pα = −b(p, µ)α2. Within
the simple approach based on a µ-dependence, that is strictly only valid in the perturbative
regime, one can estimate the momentum-dependent coefficient b(p, µ) by b(µ) = b(γ Tτ , µ) at an
(average) momentum scale γ Tτ with γ ≤ 1.

The coefficient bµ can be fixed such that the chiral transition temperature and the confinement-
deconfinement transition agree at some arbitrary non-vanishing µ. Interestingly, it turns out
that then the transition temperatures agree for all values of µ. The related value of bµ is provided
by γ % 1/4 and

bµ % 16
π

Nf . (4.100)
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There are no double counting effects due to the inclusion of the Dirac determinant in the PQM
and the independent adjustment of the Polyakov-loop model parameters: the Polyakov-loop
potential parameters, in particular b2, genuinely depend on the running coupling, which is
changed in the presence of quarks. This effect is modeled by changing T0 → T0(Nf ) as defined
in (4.97). The direct contributions to the grand potential which originate from the fermionic
determinant Ωq̄q, (4.87), are not governed by this redefinition, and have to be added separately.

A second step implements a µ-dependent running coupling in the b2 coefficient, analogous to
the Nf -dependence discussed above. Indeed, one can argue that this is a minimal necessary
generalization: without a µ-dependent b2 the confinement-deconfinement phase-transition has
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restored phase cannot be confining since the string breaking scale would be zero.
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In the right panel of Fig. 4.26 the scaled pressure is shown as function of the temperature for
three different quark chemical potentials. An increase of the chemical potential leads to an
increase of the pressure as more quark degrees of freedom are active. For a certain chemical
potential the crossover transition changes to a first-order phase transition. In this case the
pressure has a kink at the transition point but remains a continuous function. The kink at
T ∼ 81 MeV for the µ = 270 MeV curve is clearly visible.

Another interesting observable is the net quark density. It is obtained from the thermodynamic
potential via nq = −∂Ω(T, µ)/∂µ. The quark density, normalized to 1/T 3, is displayed as a
function of the temperature in the left panel of Fig. 4.27 for three different chemical potentials
µ = 100, 168 and 270 MeV. In comparison to the pure quark-meson model without the Polyakov

 0

 2

 4

 6

 8

 10

 12

 14

 0  50  100  150  200  250  300  350

n
q
/T

3

T [MeV]

µ = 100 MeV

µ = 168 MeV

µ = 270 MeV

 0

 5

 10

 15

 20

 0  50  100  150  200  250  300  350

!
q
/T

2

T [MeV]

µ = 0  MeV

µ = 168 MeV

µ = 270 MeV

Figure 4.27: Left: The quark number density nq/T
3 for various values of µ. The dashed lines de-

note the corresponding Stefan-Boltzmann limits. Right: The scaled quark-number susceptibility
χq/T

2 as a function of temperature for three different quark chemical potentials, µ = 0, 168, 270
MeV.

loop, the quark density in the confined phase is much more suppressed when the interaction
of quarks with the Polyakov loop is added [637, 608]. A similar effect is seen in the PNJL
model. Above the phase transition, the quark density of the pure quark-meson model approaches
the Stefan-Boltzmann limit nq = Nfµ(T 2 + (µ/π)2) immediately. With the Polyakov-loop
dynamics this behavior is changed drastically. The quark densities increase slightly above the
corresponding SB limits and decrease again with growing temperature. For high temperatures
the SB limit of the quark density is always reached from above. At a first-order phase transition
nq jumps and drops immediately after the transition for increasing temperatures.

The quark-number susceptibility measures the static response of the quark number density to
an infinitesimal variation of the quark chemical potential and is given by χq = ∂nq/∂µ. It is
shown in the right panel of Fig. 4.27 as a function of temperature for several values of µ. This
observable can be used to identify the existence and location of the critical endpoint in the phase
diagram. At a first-order phase transition this quantity has a discontinuity and in equilibrium
only at a second-order critical endpoint it is divergent. Even for finite pion masses the critical
endpoint is of second-order and induces a divergent quark-number susceptibility. For µ = 168
MeV, close to the critical chemical potential of the CEP, χq diverges at the critical temperature.

The modifications caused by the quark-gluon interaction on the quark number susceptibility,
are similar as those already discussed in the context of the quark-number density. Compared
to the pure quark-meson model χq is again more suppressed below the chiral phase transition.
Above the transition χq lies above the corresponding SB limit χq/T

2 = Nf (1+3/π2(µ/T )2). At
high temperatures the SB limit (not shown in the figure) is again reached from above.
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The PQM model

quarks coupled to (σ, ~π)-fields and the Polyakov loop

Lagrangian:

LPQM = q̄ [iD/(φ)− G(σ + iγ5~τ~π)] q +
1

2
(∂µσ)2 +

1

2
(∂µ~π)2−U(σ, ~π)−U(φ, φ∗)

U(σ, ~π) =
λ

4

“
σ2 + ~π2 − v 2

”2

− cσ

thermodynamic potential:

Ω0(T , µ; m) = U(φ, φ∗) + U(σ) + Ωq̄q
0

Nf and µ-dependence of T0

T0(Nf , µ) = Tτe−1/ατ b(µ)

b(µ) =
1

6π
(11Nc − 2Nf )− 16

π
Nf

µ2

T 2
τ

Nf 0 1 2 2 + 1 3
T0 [MeV] 270 240 208 187 178

Table 4.3: The critical Polyakov-loop temperature T0 for Nf massless flavors.

Massive flavors lead to suppression factors of the order T 2
0 /(T 2

0 + m2) in the β-function. For
2 + 1 flavors and a current strange quark mass ms ≈ 150 MeV one obtains T0(2 + 1) = 187
MeV. We remark that the estimates for T0(Nf ) have an uncertainty at least of the order ±30
MeV. This uncertainty comes from the perturbative one-loop nature of the estimate and the
poor accounting for the temperature effects. For example, with the two-loop coefficient (4.95)
and restricting on Nf = 2 yields T0(2) = 192 MeV. Fortunately, the results only show a mild T0

dependence.

There are no double counting effects due to the inclusion of the Dirac determinant in the PQM
and the independent adjustment of the Polyakov-loop model parameters: the Polyakov-loop
potential parameters, in particular b2, genuinely depend on the running coupling, which is
changed in the presence of quarks. This effect is modeled by changing T0 → T0(Nf ) as defined
in (4.97). The direct contributions to the grand potential which originate from the fermionic
determinant Ωq̄q, (4.87), are not governed by this redefinition, and have to be added separately.

A second step implements a µ-dependent running coupling in the b2 coefficient, analogous to
the Nf -dependence discussed above. Indeed, one can argue that this is a minimal necessary
generalization: without a µ-dependent b2 the confinement-deconfinement phase-transition has
a higher critical temperature than the chiral phase transition at vanishing chemical potential.
This is an unphysical scenario because QCD with dynamical massless quarks in the chirally
restored phase cannot be confining since the string breaking scale would be zero.

As for the Nf -dependence one can resort to perturbative estimates, by allowing for an additional
µ-dependent term in the one-loop coefficient b,

b(µ) =
1
6π

(11Nc − 2Nf )− bµ
µ2

T 2
τ

. (4.98)

This simple choice of the µ-dependent part can be motivated by using HDL/HTL results on the
effective charge [602]

α(p, T, µ) =
α(p)

1 + m2
D/p2

, (4.99)

with the Debye mass m2
D = (Nc/3+Nf/6)g2T 2+Nf/(2π2)g2µ2. The µ-derivative of the modified

coupling, µ∂µα = bµµ2/p2, can be related to a momentum derivative p∂pα = −b(p, µ)α2. Within
the simple approach based on a µ-dependence, that is strictly only valid in the perturbative
regime, one can estimate the momentum-dependent coefficient b(p, µ) by b(µ) = b(γ Tτ , µ) at an
(average) momentum scale γ Tτ with γ ≤ 1.

The coefficient bµ can be fixed such that the chiral transition temperature and the confinement-
deconfinement transition agree at some arbitrary non-vanishing µ. Interestingly, it turns out
that then the transition temperatures agree for all values of µ. The related value of bµ is provided
by γ % 1/4 and

bµ % 16
π

Nf . (4.100)
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In the right panel of Fig. 4.26 the scaled pressure is shown as function of the temperature for
three different quark chemical potentials. An increase of the chemical potential leads to an
increase of the pressure as more quark degrees of freedom are active. For a certain chemical
potential the crossover transition changes to a first-order phase transition. In this case the
pressure has a kink at the transition point but remains a continuous function. The kink at
T ∼ 81 MeV for the µ = 270 MeV curve is clearly visible.

Another interesting observable is the net quark density. It is obtained from the thermodynamic
potential via nq = −∂Ω(T, µ)/∂µ. The quark density, normalized to 1/T 3, is displayed as a
function of the temperature in the left panel of Fig. 4.27 for three different chemical potentials
µ = 100, 168 and 270 MeV. In comparison to the pure quark-meson model without the Polyakov
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Figure 4.27: Left: The quark number density nq/T
3 for various values of µ. The dashed lines de-

note the corresponding Stefan-Boltzmann limits. Right: The scaled quark-number susceptibility
χq/T

2 as a function of temperature for three different quark chemical potentials, µ = 0, 168, 270
MeV.

loop, the quark density in the confined phase is much more suppressed when the interaction
of quarks with the Polyakov loop is added [637, 608]. A similar effect is seen in the PNJL
model. Above the phase transition, the quark density of the pure quark-meson model approaches
the Stefan-Boltzmann limit nq = Nfµ(T 2 + (µ/π)2) immediately. With the Polyakov-loop
dynamics this behavior is changed drastically. The quark densities increase slightly above the
corresponding SB limits and decrease again with growing temperature. For high temperatures
the SB limit of the quark density is always reached from above. At a first-order phase transition
nq jumps and drops immediately after the transition for increasing temperatures.

The quark-number susceptibility measures the static response of the quark number density to
an infinitesimal variation of the quark chemical potential and is given by χq = ∂nq/∂µ. It is
shown in the right panel of Fig. 4.27 as a function of temperature for several values of µ. This
observable can be used to identify the existence and location of the critical endpoint in the phase
diagram. At a first-order phase transition this quantity has a discontinuity and in equilibrium
only at a second-order critical endpoint it is divergent. Even for finite pion masses the critical
endpoint is of second-order and induces a divergent quark-number susceptibility. For µ = 168
MeV, close to the critical chemical potential of the CEP, χq diverges at the critical temperature.

The modifications caused by the quark-gluon interaction on the quark number susceptibility,
are similar as those already discussed in the context of the quark-number density. Compared
to the pure quark-meson model χq is again more suppressed below the chiral phase transition.
Above the transition χq lies above the corresponding SB limit χq/T

2 = Nf (1+3/π2(µ/T )2). At
high temperatures the SB limit (not shown in the figure) is again reached from above.
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Figure 4.17: Left: Scaled chiral condensate and Polyakov loop Φ(T ) as functions of temperature
at zero chemical potential. Right: Plots of ∂〈ψ̄ψ〉/∂T and ∂Φ/∂T .

temperature is the thermodynamic potential per unit volume:

Ω = U (
Φ, Φ̄, T

)
+

σ2

2G

− 2Nf T

∫
d3p

(2π)3
{

Trc ln
[
1 + e−(Ep−µ̃)/T

]
+ Trc ln

[
1 + e−(Ep+µ̃)/T

]}
− 6Nf

∫
d3p

(2π)3
Ep θ(Λ2 − &p 2) , (4.76)

where µ̃ = µ+iA4 and Ep =
√

&p 2 + m2 is the quark quasiparticle energy. The last term involves
the NJL three-momentum cutoff Λ. The second (finite) term does not require any cutoff.

Notice that the coupling of the Polyakov loop to quarks effectively reduces the residues at the
quark quasiparticle poles as the critical temperature is approached from T > Tc: expanding
the logarithms in the second line of (4.76) one finds Trc ln (1 + exp[−(Ep − µ− iA4)/T ]) =
3φ exp[−(Ep − µ)/T ] + ... , with φ then to be replaced by 〈φ〉 ≡ Φ which tends to zero as
T → Tc.

From the thermodynamic potential (4.76) the equations of motion for the mean fields σ,Φ and
Φ̄ are determined through

∂Ω
∂σ

= 0 ,
∂Ω
∂Φ

= 0 ,
∂Ω
∂Φ̄

= 0 . (4.77)

This set of coupled equations is then solved for the fields as functions of temperature T and
quark chemical potential µ. Fig. 4.17(a) shows the chiral condensate together with the Polyakov
loop Φ as functions of temperature at µ = 0 where we find Φ = Φ̄. One observes that the
introduction of quarks coupled to the σ and Φ fields turns the first-order transition seen in
pure-gauge lattice QCD into a continuous crossover. The crossover transitions for the chiral
condensate 〈ψ̄ψ〉 and for the Polyakov loop almost coincide at a critical temperature Tc & 220
MeV (see Fig. 4.17(b)). We point out that this feature is obtained without changing a single
parameter with respect to the pure gauge case. The value of the critical temperature found
here is a little high if compared to the available data for two-flavour Lattice QCD [587] which
give Tc = (173± 8) MeV. For quantitative comparison with existing lattice results we choose to
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PQM (µ = 0)

Inserting the µ-dependent coefficient b(µ) into (4.97) then leads to a T0 with additional µ-
dependence, such that

T0(µ,Nf ) = Tτe
−1/(α0b(µ)) . (4.101)

(4.101) together with (4.100) should be viewed as a rough estimate of the µ-dependence of
T0. For more quantitative results the non-perturbative running of the coupling in the presence
of finite temperature and quark density has to be considered. This can be incorporated in a
self-consistent RG-setting.

4.5.9 Phase structure and thermodynamic variables

The phase structure of the PQM model is determined by the behavior of the order parameters
σ, φ and φ̄ and the grand canonical potential as a function of temperature and quark chemical
potential. All numerical results have been obtained for Nf = 2. Then T0 = 208 MeV in
agreement with Tab. 4.3. This value is different from that taken in Ref. [603, 604] where
T0 = 270 MeV, the value of Nf = 0. In these works T0 = 210 MeV has been fixed in order to
compare with lattice results. The Nf - and µ-dependence suggested above offers a qualitative
explanation for this choice.

In the left panel of Fig. 4.23 the temperature dependence of the chiral condensate 〈q̄q〉 and the
Polyakov-loop expectation value φ at µ = 0 is shown in relative units. These results can be

Figure 4.23: Left: The normalized chiral condensate 〈q̄q〉 and the Polyakov loop φ as a function
of temperature for µ = 0. Right: The temperature dependence of ∂〈q̄q〉/∂T and ∂φ/∂T for
µ = 0. The Polyakov variable is scaled by a factor of 5. A chiral crossover is found at T ∼ 180
MeV and a deconfinement crossover at a similar temperature.

directly compared to those of the PNJL model in Fig. 4.17. They are qualitatively similar.

At µ = 0 a chiral crossover temperature Tc = 184 MeV is found with an uncertainty of ∼
±14 MeV originating in the error estimate ±30 MeV for T0. For example, using the two-loop
running of the coupling (4.95), and hence T0(Nf ) = 192 MeV yields Tc ∼ 177 MeV. In the
presence of dynamical quarks the Polyakov loop shows also a crossover at the same pseudo-
critical temperature. This can be read off from the peak position of ∂〈q̄q〉/∂T and ∂φ/∂T ,
shown in the right panel of Fig. 4.23.

In two-flavor lattice simulations extrapolated to the chiral limit a pseudo-critical temperature
Tc = 173 ± 8 MeV is found using improved staggered fermions [605]. Recently, a recalculation
of the transition temperature with staggered fermions for two light and one heavier quark mass
close to their physical values yields a Tc = 192 ± 7 MeV using the Sommer parameter r0 for
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grand potential beyond mean field → mesonic fluctuations:

+ + + + · · ·

1/Nc -diagrams can be summed to all order (’ring sum’)

δΩ =
X

M

ΩM ; ΩM =

Z
d3q

(2π)3

T

2

X
iωq

ln(1− 2GΠM (iωq, ~q))

ΩM = −
Z

d3q

(2π)3

Z ∞
0

dω

π
(1 + 2nB (ω))φM ; φM =

1

2i
ln

1− 2GΠM (ω − iη,~q)

1− 2GΠM (ω + iη,~q)
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Z

d3q

(2π)3

Z
dω

π
nB (ω)φM| {z }

NSR finite

+

Z
d3q

(2π)3

Z
dω

2π
∆φ| {z }

qfl

∆φ = φT ,µ − φ0

∆φ(π) →
36

π
Λ4

q(m2
vac − m2)

1

(ω2 − ~q2)2

∆φ(σ) →
12

π
Λ4
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Flow equation

scale-dependent effective action:

Γk [φ] ≡ V

T
Ωk (T , µ;φ); lim

k→0
Γk = Γ full quantum action

flow equation: (PTRG) t = ln(k/Λ)

∂tΓk [φ] = −1

2

Z ∞
0

dτ

τ
[∂tRk (τk2)]Tr exp

“
−τΓ

(2)
k [φ]

”
Γ

(2)
k [φ] =

δΓk

δφδφ

The average action Γk corresponds to an integration over all modes of the quantum fields with
Euclidean momenta larger than the infrared cutoff scale, i.e., q2 > k2. The modified Legendre
transform guarantees that the only difference between Γk and Γ is the effective IR cutoff ∆kS
and thus only quantum fluctuations with momenta larger than k are included.

Figure 4.33: The effective average action Γk as an interpolation between the bare action in the
UV and the full effective action Γ in the IR.

In the limit k → 0, the infrared cutoff is removed and the effective average action becomes
the full quantum effective action Γ containing all quantum fluctuations. Thus, for any finite
infrared cutoff k the integration of quantum fluctuations is only partially done. The influence of
modes with momenta q2 < k2 is not considered. This scenario is visualized in Fig. 4.33 where
the k-dependent effective average action Γk as an interpolation between the bare action in the
ultraviolet and the full effective action in the infrared is shown.

In the limit k → ∞ the effective average action matches the bare or classical action. In a
theory with a physical UV cutoff Λ, we therefore associate Γk=Λ with the bare action because no
fluctuations are effectively taken into account. As the scale k is lowered, more and more quantum
fluctuations are taken into account. As a consequence, Γk can be viewed as a microscope with a
varying resolution whose length scale is proportional to 1/k. It averages the pertinent fields over
a d-dimensional volume with size 1/kd and permits to explore the system on larger and larger
length scales. In this sense, it is closely related to an effective action for averages of fields, hence
its denotation as effective average action becomes manifest. Thus, for large scale k one has a
very precise spatial resolution, but one also investigates effectively only a small volume 1/kd.
For lower k the resolution is smeared out and the detailed information of the short distance
physics is lost. However, since the observable volume is increased, long distance effects such as
collective phenomena which play an important role in statistical physics become more and more
visible.

The ’decimation’ idea, presented above, is in close analogy to a repeated application of the
so-called block-spin transformation on a lattice invented by Kadanoff et al. [649]. This trans-
formation is based on integrating out the fluctuations with short wavelengths and a subsequent
rescaling of the parameters which govern the remaining long-range fluctuations such as the mass,
coupling constant etc. On the sites of a coarse lattice more and more spin-blocks are averaged
over. Hence, in the language of statistical physics, the effective average action can also be
interpreted as a coarse grained free energy with a coarse graining scale k.
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quark-meson model: (~Φ = (σ, ~π); φ2 = σ2 + ~π2)

Γk [φ] =

Z 1/T

0

dτ

Z
d3x q̄ [i∂/− G(σ + iγ5~τ~π)] q+

1

2
(∂µσ)2+

1

2
(∂µ~π)2+Uk (φ2)+µq†q

at the cutoff schale Λ

UΛ(φ) =
λ

4

“
σ2 + ~π2 − v 2

”2

− cσ
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flow of Ω:

∂tΩk (T , µ) =
k4

12π2

»
3

Eπ
coth

„
Eπ
2T

«
+

1

Eσ
coth

„
Eσ
2T

«
−2Nc Nf

Eq


tanh

„
Eq − µq

2T

«
+ tanh

„
Eq + µq

2T

«ff–

E 2
π = 1 + 2Ω′k/k2

E 2
σ = 1 + 2Ω′k/k2 + 4φ2Ω′′k /k2

E 2
q = 1 + Gφ2/k2

Ω′k = ∂Ωk/∂φ etc φ = 〈σ〉

Figure 4.36: Scale evolution of the grand canonical potential Ωk towards the infrared starting
at kφ. The dashed line shows the scale evolution of the nontrivial minimum of the potential
starting at kχ. For small values of k, the potential becomes more and more convex and the
minimum becomes scale-independent.

chiral symmetry breaking (see dashed line). Around scales of the order of the pion mass the
potential minimum becomes scale-independent. The reason for this stability of the vacuum
expectation value is that the quarks acquire a relatively large constituent mass Mq. These heavy
modes will decouple from the further evolution once the scale drops below Mq. The evolution
is then essentially driven by the massless Goldstone bosons in the chiral limit. Of course, for
non-vanishing pion masses the evolution of the model is effectively terminated around scales
k ∼ mπ. Quarks below such scales appear to be no longer important for the further evolution of
the mesonic system. Due to confinement quarks should anyhow no longer be included for scales
below ΛQCD. As already mentioned, the final goal of such an evolution is to extract experimental
quantities such as meson (pole) masses, decay constants etc. in the IR. These are also used to fix
the initially unknown model parameters at the UV scale for the vacuum. They are adjusted in
such a way that chiral symmetry is spontaneously broken in the IR (see also discussion in Sec.
4.5.6). This means for example that the minimum φ0 is set to the pion decay constant fπ = 93
MeV in the IR. Finally, once the parameters for the vacuum are fixed, the finite temperature
and density behavior of the system can then be predicted without further adjustments.

4.7.3 The phase diagram of the quark-meson model

The knowledge of the thermodynamic potential Ω as a function of its natural variables T and µq

in the IR completely specifies the equilibrium thermodynamics of the system. Other quantities
of interest can then be expressed as derivatives in the usual way. For example, the net quark
number density and the chiral quark number susceptibility are given by

nq(T, µq) = −∂Ω(T, µq)
∂µq

and χq(T, µq) = −∂2Ω(T, µq)
∂µ2

q

. (4.118)
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mean field:
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finite quark mass

parallel to the first-order transition line the divergence scales with an critical exponent γ which
e.g. in mean field is γ = 1. For any other path, not parallel to the first-order line, the divergence
scales with another critical exponent ε which in mean-field theory is equal to 2/3. Since γ > ε
the susceptibility is enhanced in the direction parallel to the first-order transition line. This is
the reason for the elongated shape of the critical region in the phase diagram since the inequality
of the critical exponents remains valid within the RG treatment.

It is instructive to compare these findings with those obtained in mean-field theory. In general,
fluctuations are neglected in mean-field theory. Thus, the impact of the quantum and thermal
fluctuations on the shape of the region around the critical points in the phase diagram can
be investigated. Repeating a similar calculation of the contour plot of Fig. 4.37 now for the
scalar susceptibility in mean-field approximation an elongated region in the direction of the
first-order transition line is again found. The results for three different ratios of the scalar
susceptibilities around the CEP in reduced units are collected in Fig. 4.38. The light curves are
the mean-field and the other ones the RG results. The region obtained with the RG is much
more compressed. While the interval in the temperature direction is comparable in both cases,
the effect in the chemical potential direction is enormous. In the RG calculation the interval
is shrunken by almost one order of magnitude, despite the fact that the corresponding critical
exponents are quite similar. A similar result is obtained for the critical region of the quark
number susceptibility.
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Figure 4.38: Contour regions in the phase diagram for different ratios of the scalar susceptibilities
around the CEP in reduced units. Dark lines: RG result, light lines: mean-field approximation.

4.7.4 Summary and Conclusion

A brief introduction to the functional renormalization group methods with a focus on the flow
equation for the effective average action is presented. The class of the proper-time flow is in-
troduced and its relation to the effective average action is discussed. QCD in an RG framework
is exposed and the hierarchy of different momentum scales presented. Within the presented
Wilsonian RG approach the phase structure of hadronic matter in the context of a two-flavor
quark-meson model is analyzed. This effective model captures essential features of QCD such
as the spontaneous breaking of chiral symmetry in the vacuum. It can therefore yield valuable
insights into the critical behavior which is associated with chiral symmetry. Of special impor-
tance is the emergence of a CEP in the phase diagram which is intensely discussed at present
in connection with fluctuation signals in heavy-ion collisions (cf. Sec. 4.6). Here the size of the
critical region around the CEP is of special importance. So far, most studies of this issue which
are available in the literature, have been performed in the mean-field approximation which ne-
glects thermal and quantum fluctuations. As is also well known from condensed matter physics,
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