The virial equation of state for astrophysics

Achim Schwenk

CANADA'S NATIONAL LABORATORY FOR PARTICLE AND NUCLEAR PHYSICS

Owned and operated as a joint venture by a consortium of Canadian universities via a contribution through the National Research Council Canada

ANL/JINA Workshop on the EOS in Astrophysics Argonne National Laboratory, Aug. 26, 2008

supported by

trshare.triumf.ca/~schwenk/

Outline

The virial equation of state of low-density nuclear matter with C.J. Horowitz and E. O'Connor

Neutrino response from the virial expansion with C.J. Horowitz

Light nuclei A=2,3 and neutrino breakup with E. O'Connor, D. Gazit, C.J. Horowitz, N. Barnea and with A. Arcones, G. Martinez-Pinedo, T. Janka, C.J. Horowitz, K. Langanke

Equation of state from low-momentum interactions at intermediate densities with S.K. Bogner, R.J. Furnstahl, A. Nogga with L. Tolos, B. Friman, and with C.J. Pethick Forschungszentrum Jülich

Niels Bohr Institute

NORDITA

in der Helmholtz-Gemeinschaft

TRIUMF

Max Planck Institute

FIAS Frankfurt Institute 🏾 🌋 or Advanced Studies

Motivation

Core-collapse supernovae most sensitive to low-density nucleonic matter

Conditions at neutrinosphere (surface of last scattering of neutrinos):

 $T \sim 4$ MeV from ~ 20 SN1987a events

$$n \sim 10^{11} - 10^{12} \text{ g/cm}^3 \text{ from } n\sigma \sim n(G_F E_v)^2 \sim R^{-1}$$

What is the equation of state and neutrino response ${}_{0}^{\perp}$ of nuclear matter near the neutrinosphere?

Fugacity small $z = e^{\mu/T} \lesssim 0.5$ for $n \lesssim 4 \cdot 10^{11} \, (T/\text{MeV})^{3/2} \, \text{g/cm}^3$

Virial exansion gives model-independent answers for SN neutrinosphere Horowitz, AS (2006)

Before and after SN1987A

Very low-density physics is large scattering length physics can tune scattering length of cold atoms via Feshbach resonances

Properties continuous across resonance, desire systematic approach that includes bound nuclei and resonant interactions on equal footing

Nuclear interactions/reactions have many large scattering lengths: all nucleon-nucleon, neutron-alpha $P_{3/2}$, alpha-alpha $0^+,\,2^+,\ldots$

Virial expansion: general formalism for low n, high T assumptions: gas phase, T > any T_{crit}, fugacity $z = e^{\mu/T}$ small Neutron matter

$$P = \frac{2T}{\lambda^3} \left(z + z^2 b_n + z^3 b_n^{(3)} + \mathcal{O}(z^4) \right) \quad n = \frac{2}{\lambda^3} \left(z + 2z^2 b_n + 3z^3 b_n^{(3)} + \mathcal{O}(z^4) \right)$$

Second virial coefficient \sim 2-particle partition fn

$$b_n(T) = \frac{1}{2^{1/2} \pi T} \int_0^\infty dE \ e^{-E/2T} \,\delta^{\text{tot}}(E) - 2^{-5/2} \int_0^\infty dE \ e^{-E/2T} \,\delta^{\text{tot}}(E) + 2^{-5$$

For infinite scattering length $a=\pm\infty$ $b_n=3/2^{5/2}=0.53$, not k_Fa expansion, tested in cold atoms Ho, Mueller (2004); Thomas et al. (2005)

Second virial coefficient for neutrons approx T independent $b_n=0.30$, leads to scaling $E/E_{free}=P/P_{free}=\xi(T/T_F)$

Previous work Buchler, Coon (1977); Pratt et al. (1987); Venugopalan, Prakash (1992); Roepke at al.

Neutron matter equation of state

Fugacity small for $n \leq 4 \cdot 10^{11} \, (T/{\rm MeV})^{3/2} \, {\rm g/cm^3}$

Comparison to Friedman, Pandharipande (x)

Nuclear matter

deuterons enter as bound state contribution to $b_2 \sim e^{E_d/T}$ nuclei as bound state contributions to b_A , limits nucleon virial expansion

at low densities, nuclear matter mainly composed of n,p and α particles, include α particles explicity, to second-order in fugacities z_n , z_p , z_{α}

$$\frac{P}{T} = \frac{2}{\lambda^3} (z_n + z_p + (z_n^2 + z_p^2) b_n + 2z_p z_n b_{pn}) + \frac{1}{\lambda_\alpha^3} (z_\alpha + z_\alpha^2 b_\alpha + 2z_\alpha (z_n + z_p) b_{\alpha n})$$

second virial coefficients directly from NN, N α , $\alpha\alpha$ phase shifts and E_d model-independent description of matter in thermal equilibrium

consider chemical equilibrium $z_{\alpha} = z_p^2 z_n^2 e^{E_{\alpha}/T}$ adjust z_n , z_p to reproduce desired baryon density and proton fraction

can include heavy nuclei at higher densities with z_A virial b_{NA} ,... correct NSE models for strong interactions between nuclei

Virial coefficients

neglected Coulomb (use np,n α phase shifts; b₂ for plane wave bc), mixing parameters and inelasticities in scattering, can improve this

for b_{NN} : all L≤6 from Nijmegen PWA93, includes deuteron and large ${}^{1}S_{0}$ scattering lengths on equal footing

for $b_{\alpha n}$: all L≤3 from Arndt, Roper (1970) for E<20 MeV, Amos, Karataglidis (2005) optical model for higher E, includes $P_{3/2}$ resonance

for $b_{\alpha\alpha}$: all L≤6 from Afzal et al. (1969) for E<30 MeV, Bacher et al. (1972) for 30<E<70 MeV includes 0⁺, 2⁺ resonances

virial coefficients dominated by resonant (large a) interactions

Composition: α mass fraction Hierarchy of virial contributions: b_{NN} more important than $b_{\alpha n}$, b_{α} $b_{\alpha n}$ attractive due to $P_{3/2}$ resonance

Estimate errors due to neglected third virial coefficient $b_3 \sim \pm 10$

 α mass fraction differs from LS=Lattimer-Swesty, Shen et al. EOS used in SN simulations

LS models $n\alpha$ interaction with repulsive excluded volume

 α mass fraction for various T

 x_{α} important for spin/neutrino response, since α particles have J=0

Pressure

Variational calculations Friedman, Pandharipande fail to describe α contributions

Pressure agrees well with LS, Shen et al. EOS

Entropy

Entropy reflects composition (proton and α fraction)

LS may predict too few α particles in nuclear matter Good agreement for extremely neutron-rich matter Breakdown of virial EOS due to heavy nuclei, while fugacities z < 0.2

Energy of low-density nuclear matter

find large E/A at low densities due to clustering, α particles crucial E/A \approx const. even for 1/100 nuclear matter density

 $E/A \approx$ const. requires α particles, heavy nuclei and larger clusters

Symmetry energy

Consistent neutrino response

Cross section for elastic vN scattering in n,p, α matter

$$\frac{1}{V}\frac{d\sigma}{d\Omega} = \frac{G_{\rm F}^2 E_{\nu}^2}{16\pi^2} \left(g_a^2 \left(3 - \cos\theta \right) (n_n + n_p) S_a(q) + (1 + \cos\theta) (n_n + 4n_\alpha) S_\nu(q) \right)$$

 S_a describes axial/spin response, S_v vector/density response virial expansion provides consistent, model-independent response in long-wavelength limit. Neutron matter:

$$S_v(q=0) = \frac{T}{(\partial P/\partial n)_T} = \frac{1+4zb_n}{1+2zb_n}$$

axial response from spin-polarized matter see Burrows, Sawyer (1998) $z_{+/-}$ fugacity for spin \uparrow/\downarrow , axial $z_a = (z_+/z_-)^{1/2}$

$$S_a(q=0) = \frac{1}{n} \frac{\partial}{\partial z_a} (n_+ - n_-) \Big|_{z_a=1} = 1 + 2(b_+ - b_-) \frac{z}{1 + 2zb_n}$$

virial coeff $b_{+/-}$ for neutron-neutron with like $\uparrow\uparrow$ / opposite $\uparrow\downarrow$ spins

Response of neutron matter

virial vector response is attractive $S_v>1$, disagrees with RPA of Burrows, Sawyer (×) use Landau parameters of symmetric nuclear matter for all Y_p virial axial response is repulsive $S_a<1$, follows from Pauli principle, qualitatively similar to Burrows, Sawyer (+)

Response of nuclear matter

attractive nn, n α , $\alpha\alpha$ interactions increase prob to find n or α particles close together, increase local weak charge, leads to attractive S_v>1 total virial response $\sigma=S_{tot}\sigma_0$ larger than RPA due to α contributions

Virial equation of state with light nuclei

O'Connor et al. (2007)

included A=3 nuclei and nucleon-A=3 virial coefficients

A=3 nuclei decrease alpha mass fraction, small effects of $b_{N-A=3}$ near neutrinosphere ~10% in A=3

d, ³H, ⁴He mass fractions can be comparable for neutron-rich matter

Neutrino breakup of A=3

d

$T_{\nu}[{\rm MeV}]$	3	Н	$^{3}\mathrm{He}$		
1	1.97×10^{-6}	1.68×10^{-5}	3.49×10^{-6}	2.76×10^{-5}	
2	4.62×10^{-4}	4.73×10^{-3}	6.15×10^{-4}	5.94×10^{-3}	
3	5.53×10^{-3}	6.38×10^{-2}	6.77×10^{-3}	7.41×10^{-2}	
4	2.68×10^{-2}	3.37×10^{-1}	3.14×10^{-2}	3.77×10^{-1}	
5	8.48×10^{-2}	1.14	9.70×10^{-2}	1.25	
6	2.09×10^{-1}	2.99	2.35×10^{-1}	3.21	
7	4.38×10^{-1}	6.61	4.87×10^{-1}	7.03	
8	8.20×10^{-1}	13.0	9.03×10^{-1}	13.7	
9	1.41	23.4	1.54	24.6	
10	2.27	39.3	2.47	41.2	

energy transfer

$$\frac{dE_{\nu}}{dx} = n_b \sum_{i={}^{3}\mathrm{H}, {}^{3}\mathrm{He}, {}^{4}\mathrm{He}} x_i \langle \omega \sigma \rangle_{i, T_{\nu}}$$

can be dominated by breakup of loosely-bound A=3 nuclei

TABLE II: Averaged neutrino- and anti-neutrino- ${}^{3}H$ and ${}^{3}He$

Light nuclei and neutrino-driven supernova outflows

Light nuclei and neutrino-driven supernova outflows

TABLE II: Different cases explored in Sect. III.							
Case	Y_e determined from	EOS and composition					
А	beta equilibrium	NSE (n, p, ⁴ He)					
в	case A	NSE (nucleons and nuclei)					
С	beta equilibrium	NSE (nucleons and nuclei)					
D	beta equilibrium	virial (n, p, $A\leqslant 4$ nuclei)					

Arcones et al. (2008)

impact of light nuclei on electron antineutrino emission and wind Y_e compared to reference case A

TABLE III: Neutrinosphere radii $R_{\bar{\nu}_e,\nu_e}$, neutrino spectral temperatures $T_{\bar{\nu}_e,\nu_e}$, and average energies $\langle \epsilon_{\bar{\nu}_e,\nu_e} \rangle$, as well as number luminosities L_n , spectral parameter η_{ν_e} , and wind electron fractions Y_e^w at four different times post bounce.

	$R_{\bar{\nu}_e}$	$T_{\bar{\nu}_e}$	$\langle \epsilon_{\bar{\nu}_e} \rangle$	L_n	η_{ν_e}	R_{ν_e}	T_{ν_e}	$\langle \epsilon_{\nu_e} \rangle$	Y_e^w	
	[km]	[MeV]	[MeV]	[10 s ⁻¹]	2	[km]	[MeV]	[MeV]		
t = 2 s										
А	10.01	8.14	25.64	6.05	0.72	10.55	6.34	20.71	0.514	
в	9.977	8.30	26.16	6.38	0.79	10.55	6.34	20.80	0.507	
С	10.00	8.17	25.73	6.10	0.73	10.55	6.35	20.75	0.513	
D	9.979	8.29	26.12	6.36	0.77	10.53	6.37	20.87	0.509	
$t = 5 \mathrm{s}$										
А	9.272	7.17	22.60	3.55	1.01	9.821	5.14	17.10	0.478	
в	9.260	7.24	22.83	3.65	1.04	9.819	5.15	17.16	0.475	
С	9.295	7.04	22.17	3.37	0.94	9.814	5.16	17.07	0.487	
D	9.272	7.17	22.60	3.55	1.00	9.813	5.16	17.15	0.480	
	$t = 7 \mathrm{s}$									
А	9.107	6.88	21.69	3.03	1.15	9.683	4.73	15.90	0.462	
в	9.095	6.97	21.95	3.13	1.19	9.681	4.74	15.96	0.458	
С	9.139	6.68	21.04	2.78	1.04	9.676	4.75	15.82	0.475	
D	9.134	6.71	21.14	2.82	1.05	9.675	4.75	15.85	0.473	
				t =	10 s					
А	9.041	6.94	21.86	3.06	1.49	9.592	4.37	15.05	0.431	
в	9.039	7.02	22.12	3.17	1.53	9.590	4.37	15.12	0.427	
С	9.063	6.49	20.44	2.51	1.23	9.582	4.39	14.82	0.456	
D	9.065	6.45	20.32	2.47	1.20	9.581	4.39	14.80	0.458	

Possibility of perturbative nuclear matter with NN and 3N

start from chiral EFT to given order, soften with RG

nuclear matter converged at \approx 2nd order, motivated by Weinberg eigenvalue analysis

reduced cutoff dependence at low densities, 3N drives saturation Bogner, AS, Furnstahl, Nogga (2005) + improvements, in prep.

provides guidance to UNEDF http://unedf.org

Possibility of perturbative nuclear matter with NN and 3N

start from chiral EFT to given order, soften with RG

nuclear matter converged at \approx 2nd order, motivated by Weinberg eigenvalue analysis

reduced cutoff dependence at low densities, 3N drives saturation Bogner, AS, Furnstahl, Nogga (2005) + improvements, in prep.

provides guidance to UNEDF http://unedf.org

Nuclear matter with NN and 3N

comparison of 3N fits to ³H, ⁴He binding energies vs. ³H be, ⁴He radius Bogner et al., in prep.

radius constraint improves cutoff dependence

Neutron matter from NN and 3N

low densities from large scattering length and effective range AS, Pethick (2005)

Neutron matter and non-universal corrections

phase shifts characterize strength of interaction

effective range important, weakens interactions at higher momenta

idea: large-N expansion, N = number of particles/resonantly-int. pairs AS, Pethick (2005)

Neutron matter and non-universal corrections

di-fermion EFT for large scattering length and large effective range Weinberg (1963), Kaplan (1997),...

$$\mathcal{L} = \psi^{\dagger} \left(i\partial_0 + \frac{\nabla^2}{2} \right) \psi - d^{\dagger} \left(i\partial_0 + \frac{\nabla^2}{4} - \Delta \right) d - g \left(d^{\dagger} \psi \psi + d \psi^{\dagger} \psi^{\dagger} \right)$$

leading-order neutron matter E/N for $k_{\rm F}r_{\rm e} \lesssim 2$ or $\rho < 0.02 \, {\rm fm}^{-3}$ AS, Pethick (2005)

next-to-leading-order superfluid pairing gap

Reuter, AS, in prep.

 $k_{\rm E} r_{\rm a} < 2$ for neutron matter di-fermion EFT microscopic calculations phRG (static z) within EFT error bands phRG (adaptive z) Wambach et al. (1993) * Carlson et al., private comm. Friedman+Pandharipande (1981) ∆ [MeV] Bao et al. (1994) V_{low k} Hartree-Fock E/N [MeV] 0.4 0.5 0.70.8 0.6 3 í೧ 4 $k_{\rm F} [{\rm fm}^{-1}]$ k_F r_e

Neutron matter from NN and 3N

Tolos, Friman, AS (2007)

uncertainties from c_i overwhelm errors due to cutoff variation, mainly c_3 for neutron matter

lower c_3 (Δ dominated): less repulsion, similar to results of AV18+UIX

Summary

virial equation of state provides model-independent constraints for low-density nuclear matter and neutrino response

based directly on scattering phase shifts, includes bound states and resonant interactions on equal footing

important for supernova neutrinosphere

light nuclei can be present in significant amounts, d and ³H favored for neutron-rich conditions

include light nuclei and interactions with neutrinos in supernova and neutrino-driven wind simulations

equation of state based on low-momentum interactions at intermediate densities, with neutrino response Lykasov, Pethick, AS