Constraints on The Equation of State from Astrophysical Observations

Madappa Prakash Ohio University, Athens, OH

The Equation of State at Nonzero Density & Temperature, and its Application in Astrophysics ANL Workshop, Aug 25 - Aug 29, 2008 @ Argonne, IL

Physics & Astrophysics of Neutron Stars

- Can observations of M, R & B.E etc., (structure & composition) & P, P, T_s & B etc., (evolution) uniquely pin down the dense matter eqution of state?
- Neutron stars implicated in x-ray & γ -ray bursters, mergers with other neutron stars & black holes, etc.
- **• Observational Programs** :

SK, SNO, LVD's, AMANDA ... (ν 's) HST, CHANDRA, XMM, RXTE ... (γ 's) LIGO, VIRGO, GEO600, TAMA ... (Gravity Waves)

Connections:

Atomic, Cond. Matter, Nucl. & Part., Grav. Physics

- Theory : Many-body theory of strongly interacting systems, Dynamical response (ν - & γ - propagation & emissivities)
- Experiment: h, e^-, γ , and ν scattering experiments on nuclei, masses of neutron-rich nuclei, heavy-ion reactions, etc.

Observational Constraints

- Maximum Mass
- Minimum Rotational Period
- Radius (or Radiation Radius or Surface Redshift)
- Moment of Inertia
- ▶ Proto-Neutron Star Neutrinos (Binding Energy & ν Opacities)
- Surface Temperatures; Core Cooling Timescale (Urca or not)
- Crustal Cooling Timescale
- Seismology
- Pulse Shape Modulation
- Gravitational Radiation

Lattimer & Prakash, Phys. Rep. 442, 109 (2007).

Equations of Stellar Structure-I

• In hydrostatic equilibrium, the structure of a spherically symmetric neutron star from the Tolman-Oppenheimer-Volkov (TOV) equations:

$$\frac{dM(r)}{dr} = 4\pi r^2 \epsilon(r)$$

$$\frac{dP(r)}{dr} = -\frac{GM(r)\epsilon(r)}{c^2 r^2} \frac{\left[1 + \frac{P(r)}{\epsilon(r)}\right] \left[1 + \frac{4\pi r^3 P(r)}{M(r)c^2}\right]}{\left[1 - \frac{2GM(r)}{c^2 r}\right]}$$

- G := Gravitational constant
- P := Pressure
- $\epsilon :=$ Energy density
- M(r) := Enclosed gravitational mass
- $R_s = 2GM/c^2 :=$ Schwarzschild radius

Equations of Stellar Structure-II

• The gravitational and baryon masses of the star:

$$M_G c^2 = \int_0^R dr \, 4\pi r^2 \, \epsilon(r)$$

$$M_A c^2 = m_A \int_0^R dr \, 4\pi r^2 \, \frac{n(r)}{\left[1 - \frac{2GM(r)}{c^2 r}\right]^{1/2}}$$

- $m_A :=$ Baryonic mass
- n(r) := Baryon number density
- The binding energy of the star $B.E. = (M_A M_G)c^2$.

To determine star structure :

- Specify equation of state, $P = P(\epsilon)$
- Choose a central pressure $P_c = P(\epsilon_c)$ at r = 0
- Integrate the 2 DE's out to surface r = R, where P(r = R) = 0.

Nucleonic Equation of State

- Energy (E) & Pressure (P)vs. scaled density $(u = n/n_0)$.
- Nuclear matter equilibrium density $n_0 = 0.16 \text{ fm}^{-3}$.
- Proton fraction $x = n_p/(n_p + n_n).$
- Nuclear matter : x = 1/2.
- Neutron matter : x = 0.
- Stellar matter in β -equilibrium : $x = \tilde{x}$.

Results of Star Structure

- Stellar properties for soft & stiff (by comparison) EOS's.
- Causal limit : $P = \epsilon$.
- M_g: Gravitational mass
- R : Radius
- BE : Binding energy
- n_b : Central density
- *I* : Moment of inertia
- ϕ : Surface red shift, $e^{\phi/c^2} = (1 - 2GM/c^2R)^{-1/2}$.

Constraints on the EOS-I

 \blacktriangleright $R > R_s = 2GM/c^2 \Rightarrow$ $M/M_{\odot} \geq R/R_{s\odot}$; $R_{s\odot} = 2GM_{\odot}/c^2$ $\simeq 2.95 \text{ km}$. $\blacktriangleright P_c < \infty$ $\Rightarrow R > (9/8)R_s$ $\Rightarrow M/M_{\odot} \geq$ $(8/9)R/R_{s\odot}$. Sound speed c_s : $c_s = (dP/d\epsilon)^{1/2} < c$ $\Rightarrow R > 1.39R_{s}$ $\Rightarrow M/M_{\odot} \geq 0$ $R/(1.39R_{S\odot})$. • If $P = \epsilon$ above $n_t \simeq 2n_0$, $R > 1.52R_s \Rightarrow$ $M/M_{\odot}R/(1.52R_{s\odot})$.

Constraints on the EOS-II

Binding Energies

 $BE/M \simeq (0.60 \pm 0.5) \ (GM/Rc^2) \ (1 - GM/2Rc^2)^{-1}$ Lattimer & Prakash , Phys. Rep. 442, 109 (2007).

Mass Radius Relationship

Lattimer & Prakash, Phys. Rep. 442, 109 (2007).

General Constraints

Maximum Mass, Minimum Period Theoretical limits from GR and causality

- $M_{max} = 4.2 (\epsilon_s/\epsilon_f)^{1/2} \, {
 m M}_{\odot}$ Rhoades & Ruffini (1974), Hartle (1978)
- $R_{min} = 2.9GM/c^2 = 4.3(M/M_{\odot})$ km

Lindblom (1984), Glendenning (1992), Koranda, Stergioulas & Friedman (1997)

- $\rho_c < 4.5 \times 10^{15} (M_{\odot}/M_{largest})^2 \text{ g cm}^{-3}$ Lattimer & Prakash (2005)
- $P_{min} \simeq (0.74 \pm 0.03) (M_{\odot}/M_{sph})^{1/2} (R_{sph}/10 \text{ km})^{3/2} \text{ ms}$

Koranda, Stergioulas & Friedman (1997)

• $P_{min} \simeq 0.96 (M_{\odot}/M_{sph})^{1/2} (R_{sph}/10 \text{ km})^{3/2} \text{ ms}$ (empirical)

Lattimer & Prakash (2004)

• $\rho_c > 0.91 \times 10^{15} (1 \text{ ms}/P_{min})^2 \text{ g cm}^{-3}$ (empirical) • $cJ/GM^2 \leq 0.5$ (empirical, neutron star)

Lattimer & Prakash, Phys. Rep. 442, 109 (2007).

Measured Neutron Star Masses

- Mean & error weighted mean in M_{\odot}
- X-ray binaries:
 1.55 & 1.37
- Double NS binaries: 1.32 & 1.41
- WD & NS binaries: 1.60 & 1.33
- Lattimer & Prakash, PRL, 94 (2005) 111101; updated

Measured Neutron Star Masses

Ultimate Energy Density of Cold Matter

- Tolman VII: $\epsilon = \epsilon_c (1 - (r/R)^2)$
- $\blacktriangleright \ \epsilon_c \propto (M_\odot/M)^2$
 - A measured red-shift provides a lower limit.
 - Crucial to establish an upper limit to M_{max} .

Lattimer & Prakash, PRL, 94 (2005) 111101.

Neutron star radius measurements

Object	R_∞	D	$kT_{eff,\infty}$	Ref.
	(km)	(kpc)	(eV)	
Omega Cen	13.5 ± 2.1	$5.36\pm6\%$	66^{+4}_{-5}	Rutledge
(Chandra)				et al. ('02)
Omega Cen	13.6 ± 0.3	$5.36\pm6\%$	67 ± 2	Gendre
(XMM)				et al. ('02)
M13	12.6 ± 0.4	$7.80\pm2\%$	76 ± 3	Gendre
(XMM)				et al. ('02)
47 Tuc X7	$14.5^{+1.6}_{-1.4}$	$5.13\pm4\%$		Rybicki
(Chandra)	$(1.4 \ M_{\odot})$			et al. ('05)
M28	$14.5_{-3.8}^{+6.9}$	$5.5\pm10\%$	90^{+30}_{-10}	Becker
(Chandra)				et al. ('03)
EXO 0748-676	13.8 ± 1.8	9.2 ± 1.0		Ozel ('06)
(Chandra)	$(2.10 \pm 0.28 \ M_{\odot})$			

 $R_{\infty} = R/\sqrt{1 - (2GM/c^2R)}$; $F = 4\pi T_{eff}^4 (R_{\infty}/D)^2$ Atmospheric (sometimes magnetic) modeling required.

Constraints from Radiation Radii

Lattimer & Prakash, Phys. Rep. 442, 109 (2007).

Pressure of NS Matter

Neutron Star Matter Pressure and the Radius

Lattimer & Prakash, ApJ 550, 426 (2001).

Pressure-Radius Correlation

Lattimer & Prakash, ApJ 550, 426 (2001).

Rotational Constraints

PSR J1748-2446ad: 716 Hz; XTE J1739-285: 1122 Hz Lattimer & Prakash, Phys. Rep. 442, 109 (2007).

Moment of inertia (*I*) **measurements**

Spin precession periods:

$$P_{p,i} = \frac{2c^2 a P M (1 - e^2)}{G M_{-i} (4M_i + 3M_{-i})} \,.$$

Spin-orbit coupling causes a periodic departure from the expected time-of-arrival of pulses from pulsar A of amplitude

$$\delta t_A = \frac{M_B}{M} \frac{a}{c} \delta_i \cos i = \frac{a}{c} \frac{I_A}{M_A a^2} \frac{P}{P_A} \sin \theta_A \cos i$$

P: Orbital period a: Orbital separation e: Eccentricity $M = M_1 + M_2$: Total mass i: Orbital inclination angle θ_A : Angle between S_A and L. I_A : Moment of Inertia of A

For PSR 0707-3039, $\delta t_A \simeq (0.17 \pm 0.16) I_{A,80} \ \mu s$; Needs improved technology & is being pursued.

Limits on R from M & I measurements

- ▶ 10% error bands on I in M_{\odot} km²
- ► Horizontal error bar for $M = 1.34 \text{ M}_{\odot}$ & $I = 80 \pm 8 \text{ M}_{\odot} \text{ km}^2$
- J. M. Lattimer & B. F. Schutz, Astrophys. Jl. 629 (2005)

Thermal Evolution of a Neutron Star

(Spherical, non-rotating & non-magnetic)

$$\frac{dM}{dr} = 4\pi r^{2}\epsilon; \qquad \frac{dP}{dr} = -\frac{GM\epsilon}{c^{2}r^{2}} \left[1 + \frac{P}{\epsilon}\right] \left[1 + \frac{4\pi r^{3}P}{Mc^{2}}\right] e^{2\Lambda}$$

$$\frac{d}{dr} \left(Te^{\Phi/c^{2}}\right) = -\frac{3}{16\sigma} \frac{\kappa\rho}{T^{3}} \frac{L_{d}}{4\pi r^{2}} e^{\Phi/c^{2}} e^{\Lambda}$$

$$\frac{d\Phi}{dr} = \frac{G\left(M + 4\pi r^{3}P/c^{2}\right)}{r^{2}} e^{2\Lambda}$$

$$\frac{d}{dr} \left(L_{\nu}e^{2\Phi/c^{2}}\right) = \epsilon_{\nu}e^{2\Phi/c^{2}} 4\pi r^{2}e^{\Lambda}$$

$$\frac{d}{dr} \left(Le^{2\Phi/c^{2}}\right) = -c_{v}\frac{dT}{dt}e^{\Phi/c^{2}} 4\pi r^{2}e^{\Lambda}, \quad \text{with} \quad \Lambda = \exp(1 - 2GM/c^{2}r)^{-1/2}$$

$$(P, \epsilon): \text{ (Pressure, energy density)} \quad M: \text{ Enclosed mass}$$

$$\kappa: \text{ Opacity of matter} \quad \Phi: \text{ Gravitational potential}$$

$$L_{\nu}, \epsilon_{\nu}): \text{ Neutrino (luminosity, emissivity)}$$

$$L = L_{d} + L_{\nu}; \text{ Net luminosity}$$

 c_v : Specific heat/volume, Time t measured at $r = \infty$.

Equation of State

Moderate variation with nucleons-only matter.

Page, Lattimer, Prakash & Steiner, ApJS 155, 623 (2004).

Specific Heat

Distribution of C_v in the core among constituents

Stellar Volume $[10^{18} \text{ cm}^3]$ Page, Lattimer, Prakash & Steiner, ApJS 155, 623 (2004).

Neutrino Emissivities

Name	Process	Emissivity	References
		$({\rm erg}~{\rm s}^{-1}~{\rm cm}^{-3})$	
Modified Urca	$\begin{cases} n+n' \to n+p+e^- + \bar{\nu}_e \\ n'+p+e^- \to n'+n+\nu_e \end{cases}$	$\sim 10^{20} T_9^8$	Friman & Maxwell 1979
Kaon Condensate	$\begin{cases} n+K^- \to n+e^- + \bar{\nu}_e \\ n+e^- \to n+K^- + \nu_e \end{cases}$	$\sim 10^{24} T_9^6$	Brown et al., 1988
Pion Condensate	$\begin{cases} n + \pi^- \to n + e^- + \bar{\nu}_e \\ n + e^- \to n + \pi^- + \nu_e \end{cases}$	$\sim 10^{26} T_9^6$	Maxwell et al., 1977
Direct Urca	$\begin{cases} n \to p + e^- + \bar{\nu}_e \\ p + e^- \to n + \nu_e \end{cases}$	$\sim 10^{27} T_9^6$	Lattimer et al., 1991
Hyperon Urca	$\begin{cases} B_1 \to B_2 + l + \bar{\nu}_l \\ B_2 + l \to B_1 + \nu_l \end{cases}$	$\sim 10^{26} T_9^6$	Prakash et al., 1992
Quark Urca	$\begin{cases} d \to u + e^- + \bar{\nu}_e \\ u + e^- \to d + \nu_e \end{cases}$	$\sim 10^{26} \alpha_c T_9^6$	Iwamoto 1980

 T_9 : Temperature in units of 10^9 K.

Direct versus Modified Urca

- Unlike MUrca, Durca exhibits threshold effects.
- Superfluidity abates DUrca cooling.
- Page & Applegate, ApJ 394, L17 (1992).
 - Cooper pair breaking & reformation affects both DUrca & MUrca.

Inferred Surface Temperatures

Lattimer & Prakash, Science 304, 536 (2004).

New Cold Objects

Several cases fall below the "Minimal Cooling" paradigm & point to enhanced cooling, if these objects correspond to neutron stars.

Deconstructing a Neutron Star

• Constructing the EOS from several (M & R)'s of the same stars.

Inversion of the TOV equations

Ongoing work : Postnikov, Prakash & Lattimer (2008)

Two ways to delimit the EOS

Tests with a two-power polytrope

: For low-density, polytropic index n = 0.8, for high-density n = 2.

Tests with a model EOS

PAL31: $K_0 = 240 \text{ MeV } \& F(u) = u \text{ with } n/n_0.$

Requirements

- Masses and radii of several (say 5 to 7) same neutron stars can pin down (through deconstruction) the equation of state of neutron-star matter and shed light on the dense matter equation of state (strong many-body interactions).
- Precise laboratory experiments, particularly those involving neutron-rich nuclei, are sorely needed to pin down the near-nuclear aspects of the symmetry energy (masses, neutron skin thicknesses, collective excitations, etc.)

Future Prospects

