Variational Theory of Nuclear Matter at Finite Temperature

Abhishek Mukherjee

University of Illinois at Urbana-Champaign

ANL EOS Workshop 25-29 Aug 2008

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Work done with : Vijay Pandharipande, Jaime Morales, Geoff Ravenhall, Bob Wiringa and Gordon Baym

Objectives

Ab initio reliable Many Body Method to calculate the Equation of State of Dense Matter at Finite Temperature

Argonne v18

- Fit to NN scattering phase shifts in vacuum.
- Operator dependent

$$v_{\text{Av18}} = v^{\text{p}} \mathcal{O}^{\text{p}}$$

Wiringa, Stoks and Schiavilla - Phys. Rev. C (1995)

Urbana IX

 Fit to the binding energy of triton and the saturation density of nuclear matter

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

-

$$\blacktriangleright V_{\rm UIX} = V^R + V^{2\pi}$$

Pudliner, Pandharipande, Carlson, and Wiringa, Phys. Rev. Lett. (1995)

Objectives

Ab initio reliable Many Body Method to calculate the Equation of State of Dense Matter at Finite Temperature

Danielewicz, Lacey, Lynch Science 298 1592 (2002)

- Variational Chain Summation method
- Zero Temperature
 Akmal Pandharipande Ravenhall
 EOS

Akmal, Pandharipande Phys. Rev. C (1997), Akaml, Pandharipande and Ravenhall Phys. Rev. C (1998)

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

Objectives

Ab initio reliable Many Body Method to calculate the Equation of State of Dense Matter at Finite Temperature

Finite Temperature VCS

- ▶ Identify the relevant variational principle at $T \neq 0$ which can be used to constrain the free energy
 - \longrightarrow Gibbs-Bogoliubov variational principle
- Recast this principle so that we can use the powerful technology of VCS
- Resolve the problem of orthogonality corrections

 — The wavefunctions used in VCS are not mutually
 orthogonal

Ansatz for the Wavefunctions

Long Range Part

- Simple Slater determinant
- The single particle spectrum is different from the non-interacting case

$$\epsilon(k) = \frac{\hbar^2 k^2}{2m^*} + U(\rho, T)$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Ansatz for the Wavefunctions

Short Range Part

- Product of pair correlation operators
- The pair correlation operators mimic the operator dependence of the potential

$$\mathcal{F}_{ij} = \sum_{p} f^{p}(r_{ij}) \mathcal{O}^{p}_{ij}$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

Finite Temperature

Variational Principle at $T \neq 0$

$$F < F_v = \langle H \rangle_v - TS_v$$

$$\langle \cdot \rangle_{\nu} = \operatorname{Tr} \left[\frac{\mathrm{e}^{-\beta H_{\nu}} \cdot}{\operatorname{Tr}(\mathrm{e}^{-\beta H_{\nu}} \cdot)} \right]$$

 $S_{\nu} = \operatorname{Entropy} \operatorname{due} \operatorname{to} H_{\nu}$

- We can choose $H_v = E_l^v |\Psi_l\rangle \langle \Psi_l|$ and $E_l^v = \sum_l \epsilon(k) n_l(k)$
- Then the entropy is :

$$S_v = -\sum_k ar{n}(k) \ln ar{n}(k) + (1 - ar{n}(k)) \ln (1 - ar{n}(k))$$

• Use VCS is to calculate $\langle \Psi_I | H | \Psi_I \rangle$

Schmidt and Pandharipande Phys. Lett. B (1979), Friedman and Pandharipande Nucl. Phys A (1981)

Finite Temperature

Variational Principle at $T \neq 0$

$$F < F_v = \langle H \rangle_v - TS_v$$

$$\langle \cdot \rangle_{\nu} = \operatorname{Tr} \left[\frac{\mathrm{e}^{-\beta H_{\nu}}}{\operatorname{Tr}(\mathrm{e}^{-\beta H_{\nu}})} \right]$$

 $S_{\nu} = \operatorname{Entropy} \operatorname{due} \operatorname{to} H_{\nu}$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

- The above inequality will hold iff the Ψ_l's are ORTHONORMAL
- Unfortunately, the Ψ_l 's are NOT ORTHONORMAL

 $\langle \Psi_I | \Psi_I' \rangle \neq 0$

Orthogonality Corrections

Orthonormalization :

$$|\Theta_I\rangle = |\Psi_I\rangle - \frac{1}{2}\sum_I |\Psi_{I'}\rangle\langle\Psi_{I'}|\Psi_I\rangle + \dots$$

$$\longrightarrow \langle \Theta_I | H | \Theta_I \rangle = \langle \Psi_I | H | \Psi_I \rangle - \frac{1}{2} \sum_I \langle \Psi_I | H | \Psi_{I'} \rangle \langle \Psi_{I'} | \Psi_I \rangle + \dots$$

- No good methods to calculate the Orthogonality Corrections (OFF DIAGONAL MATRIX ELEMENTS)
- VCS can be used only for DIAGONAL MATRIX ELEMENTS

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Orthogonality Corrections

Orthonormalization :

$$|\Theta_I\rangle = |\Psi_I\rangle - \frac{1}{2}\sum_I |\Psi_{I'}\rangle\langle\Psi_{I'}|\Psi_I\rangle + \dots$$

$$\longrightarrow \langle \Theta_I | H | \Theta_I \rangle = \langle \Psi_I | H | \Psi_I \rangle - \frac{1}{2} \sum_{I} \langle \Psi_I | H | \Psi_{I'} \rangle \langle \Psi_{I'} | \Psi_I \rangle + \dots$$

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のへで

It can be shown that :

The orthogonality correction to the Free Energy VANISH in the Thermodynamic Limit

Mukherjee and Pandharipande Phys. Rev. C (2007)

$$F = \langle \Psi_I | H | \Psi_I \rangle_{\nu} - TS_{\nu} + E_{\text{corrections}} (\text{not ortho. cor.})$$

Quasiparticle Hamiltonian

$$H_{v} = \sum_{l} E_{l}^{v} |\Theta\rangle \langle\Theta|$$
$$E_{l}^{v} = \sum_{k} \epsilon(k) n_{l}(k)$$

Quasiparticle Spectrum

$$\epsilon(k) = \frac{\hbar^2 k^2}{2m^*} + U(\rho, T)$$

▶ (Quasiparticle) Entropy

$$S_{v} = -\sum_{k} \bar{n}(k) \ln \bar{n}(k) + (1 - \bar{n}(k)) \ln(1 - \bar{n}(k)))$$

$$F = \langle \Psi_I | H | \Psi_I \rangle_{\nu} - TS_{\nu} + E_{\text{corrections}} (\text{not ortho. cor.})$$

- 1. The expectation value of the Hamiltonian is expanded into cluster integrals
- 2. The pair correlation operator $\ensuremath{\mathcal{F}}$ is found by minimizing the two body cluster
- 3. The wavefunction has 4 variational parameters m^{\star}, d_c, d_t and α
- 4. The full matrix element is calculated by resumming the cluster expansion

$$F = \langle \Psi_I | H | \Psi_I \rangle_v - TS_v + E_{\text{corrections}} (\text{not ortho. cor.})$$

There are 3 other corrections added to the Free energy :

- 1. Relativistic corrections
- 2. Estimate of the perturbative corrections
- 3. A correction term added to the zero temperature EOS to get the correct saturation energy

Limitations

- Non uniform matter
- Only nucleonic degrees of freedom are included
- Pairing
- Thermal pions

 $F = \langle \Psi_I | H | \Psi_I \rangle_{\nu} - TS_{\nu} + E_{\text{corrections}} (\text{not ortho. cor.})$

- The optimal variational parameters are found by minimizing only the variational part of the free energy
- An extra penalty term is added during the minimization to make sure that the sum rules (mass and charge) are reasonably well satisfied

- * ロ > * 個 > * 注 > * 注 > ・ 注 ・ のへで

Spin-Isospin (π^0 condensation) phase transition

 The effective mass m^{*} show an enhancement across the phase transition

The tensor correlation length d_t is the length at which the pair correlation operators in the tensor channel vanish

Comparison with other calculations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Thermodynamic Consistency

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへぐ

(Near) Future Work

- VCS can be used only for Pure Neutron Matter and Symmetric Nuclear Matter
- Asymmetric Nuclear Matter :

$$E_{\mathsf{potential}}(\delta) = (1 - \delta^2) E_{\mathsf{potential}}(0) + \delta^2 E_{\mathsf{potential}}(1)$$

ション ふゆ く は マ く ほ マ く し マ

 Single particle spectrum and effective mass at zero temperature and comparison with the finite temperature spectrum