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Stellar Oscillations: what information do they convey?
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Outline

Stellar Oscillations: what information do they convey?

r-modes: sensitivity to the equation of state

Viscosityandr-mode damping

Neutron stars with/without quark matter: distinctions

How fast can such compact stars spin?
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Stellar Oscillations

Oscillation modes are classified by nature of restoring force

r-modes: Coriolis force (~Ω × ~v) term in rotating stars

p-modes: Pressure fluctuations, convective instability

g-modes: Buoyancy (gravity) smooths out inhomogeneity
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Stellar Oscillations

Oscillation modes are classified by nature of restoring force

r-modes: Coriolis force (~Ω × ~v) term in rotating stars

p-modes: Pressure fluctuations, convective instability

g-modes: Buoyancy (gravity) smooths out inhomogeneity

f -modes(no radial node): Cepheid variables⇒ distance estimators

p-modes: used in helioseismography; verified standard solar model.
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Oscillations of compact stars

Perturbations trigger oscillations

Core-collapse: Neutron stars born in oscillatory state

Crust-breaking and glitches lead to oscillations

Interactions with companion/rapid mass-transfer

Second collapse: phase transition to quark matter?
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Oscillations of compact stars

Perturbations trigger oscillations

Core-collapse: Neutron stars born in oscillatory state

Crust-breaking and glitches lead to oscillations

Interactions with companion/rapid mass-transfer

Second collapse: phase transition to quark matter?

stellar oscillations occur in a variety of astrophysical processes

1. What are the characteristic frequencies?

2. Information on structure of interior

3. Observations: spin rates, gravitational waves
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Oscillatory solutions in non-rotating stars

Perturbed Euler equation (linearized)

∂t(δ~v) + δ~v.∇~v = −∇

(
δP

ρ
− δΦ

)

Seek solutions of the form

δ~v⊥ = f(r)~Ylm(θ, φ)eiωrt; δvr ≈ 0

~Ylm ∝ (~r ×∇)Ylm are vector spherical harmonics
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Oscillatory solutions in non-rotating stars

Perturbed Euler equation (linearized)

∂t(δ~v) + δ~v.∇~v = −∇

(
δP

ρ
− δΦ

)

Seek solutions of the form

δ~v⊥ = f(r)~Ylm(θ, φ)eiωrt; δvr ≈ 0

~Ylm ∝ (~r ×∇)Ylm are vector spherical harmonics

Solutions can be classified by parity:

Spheroidal: transform as(−1)l (p,g-modes)

Toroidal: transform as(−1)l+1 (r-modes)
. – p.7/31



Oscillatory solutions in rotating stars

Additional Coriolis force term:2(~Ω × δ~v)

In the fluid rest-frame, fluid displacement~ξ =
∫ t

0
dt δ~v obeys:

−ω2
r
~ξ + 2iωr(~Ω × ~ξ) = −∇

(
δP

ρ
− δΦ

)

Employ the“Cowling approximation”for smallΩ: (δΦ = 0)

ωr =
2mΩ

l(l + 1)
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Oscillatory solutions in rotating stars

Additional Coriolis force term:2(~Ω × δ~v)

In the fluid rest-frame, fluid displacement~ξ =
∫ t

0
dt δ~v obeys:

−ω2
r
~ξ + 2iωr(~Ω × ~ξ) = −∇

(
δP

ρ
− δΦ

)

Employ the“Cowling approximation”for smallΩ: (δΦ = 0)

ωr =
2mΩ

l(l + 1)

To leading order in Ω (stellar rotation frequency), there is

NO dependence on the equation of state.
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r-mode: sensitivity to EoS

expand variables toO(Ω2): rotation modifies structure

ρ(r, θ) = ρ0(r) + ρ2(r, cosθ)
Ω2

πGρ̄0
+ O(Ω4)

Φ(r, θ) = Φ0(r) + Φ2(r, cosθ)
Ω2

πGρ̄0

+ O(Ω4)

Ther-mode frequency becomes:

ωr =
2mΩ

l(l + 1)

[

1 − κ
Ω2

πGρ̄0

]

; 0.1 ≤ κ ≤ 0.4
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r-mode: sensitivity to EoS

expand variables toO(Ω2): rotation modifies structure

ρ(r, θ) = ρ0(r) + ρ2(r, cosθ)
Ω2

πGρ̄0
+ O(Ω4)

Φ(r, θ) = Φ0(r) + Φ2(r, cosθ)
Ω2

πGρ̄0

+ O(Ω4)

Ther-mode frequency becomes:

ωr =
2mΩ

l(l + 1)

[

1 − κ
Ω2

πGρ̄0

]

; 0.1 ≤ κ ≤ 0.4

κ depends on the density profile and radius of the star:

EoS dependence enters.
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r-mode frequency

0 0.2 0.4 0.6 0.8 1
Ω/Ω

K

1.1

1.2

1.3

ω
r(m

=
2)

 / 
Ω

n=1
n=1.5
n=2
self-bound Quark Matter
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n = polytropic index (neutron star) of mass 1.4M
sun
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1/4

=165 MeV, m
s
=150 MeV)

(mass 1.2M
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, R=9.7km)

Leading order in Ω

Neutron matter: Polytrope P = Kρ1+1/n

Self-bound Quark matter: Bag model (ms 6= 0)
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Gravitational waves and r-mode instability

Contribution of gravitational waves tor-modes:

(
dE

dt

)

GW

∝ −
∑

m≥2(ωr − mΩ)2m+1ωr| δJmm|
2

︸ ︷︷ ︸

current multipole

Form ≥ 2, ωr < mΩ, so ther-mode energy grows with gravitational

wave emission, triggering the instability.
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Viscosity and r-modes

Energy ofr-mode is dissipated by bulk (ζ) and shear (η) viscosity

Tij = ζ ∂kvk
︸︷︷︸

δij + η (∂ivj + ∂jvi −
2

3
∂kvkδij

︸ ︷︷ ︸

) − Pδij

σ σij

The energy contained in anr-mode is given by:

Er ∝ R4Ω2

∫ R

0

dr ρ0(r)
( r

R

)2m+2

+ O(Ω4)

..and is dissipated at the rate

dE

dt
= −

∫

(2ηδσijδσij + ζδσδσ)d3r
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r-mode timescales

The timescale asociated to growth or dissipation (τ ) is given by

1

τi

= −
1

E

(
dE

dt

)

i

; i = GW, ζ, η
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r-mode timescales

The timescale asociated to growth or dissipation (τ ) is given by

1

τi

= −
1

E

(
dE

dt

)

i

; i = GW, ζ, η

τζ,η ≫ τGW : r-modes will be effective in spinning down the star

τζ,η ≪ τGW : r-modes are quickly damped;star can spin rapidly!
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r-mode Recap

r-mode oscillations is generic to all rotating stars

(Coriolis force)

Ther-mode is unstable to gravitational-wave emission

for all m ≥ 2

r-mode is damped by viscosity;

exploit dependence ofζ, η on EoS
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Bulk viscosity (ungapped quarks)

r-modes are low-frequency modes (∼kHz) so only weak reactions

are out of equilibrium d + u ↔ u + s :

(µd − µs) oscillates about equilibrium valuēµ(=0)
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Bulk viscosity (ungapped quarks)

r-modes are low-frequency modes (∼kHz) so only weak reactions

are out of equilibrium d + u ↔ u + s :

(µd − µs) oscillates about equilibrium valuēµ(=0)

For small perturbation amplitudes (J. Madsen, PRD 46, 3290 (1992))

ζ(ω, T ) =
αT 2

βT 4 + ω2
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Bulk viscosity of CFL (Alford et al., PRC 75, 055209 (2007))

Lightest excitations in CFL areH-boson (superfluid phonon)

andK (kaon)

mH = 0; mK0 ∼
∆

µq

√

mu(md + ms)

CFL Flavor re-equilibration :K0 → HH,K0H → H
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Bulk viscosity of CFL (Alford et al., PRC 75, 055209 (2007))

Lightest excitations in CFL areH-boson (superfluid phonon)

andK (kaon)

mH = 0; mK0 ∼
∆

µq

√

mu(md + ms)

CFL Flavor re-equilibration :K0 → HH,K0H → H

effectively convertsdown quark tostrange quark

u

s

W

d u

s

d

u u

W H

ungapped CFL
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Shear viscosity

η measures ease of momentum transport perpendicular to flow

ungapped quark matter: η determined byqq scattering

gapped (CFL) quark matter: η determined by small-angle

phonon (H-boson) collisions η ≈ 10−2 µ8

T 5

(C. Manuel et al., JHEP 0509, 076 (2005))
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Viscosities in Quark Matter

∆ = 0 (normal quark matter); ∆ > 0 (gapped quark matter)
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Viscosity of neutron matter
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The bulk viscosity is controlled by the modified urca process:

n + n → n + p + e− + ν̄e (ζ ∝ T 6)

The shear viscosity is determined bynn scattering in non-superfluid

matter (η ∝ 1/T 2); by ee, eµ scattering in superfluid matter . – p.19/31



r-mode damping timescales (Ω = ΩK)
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Normal quark matter: Bulk viscosity dampsr-mode instability

in a wide range ofT .

. – p.20/31



r-mode damping timescales (Ω = ΩK)
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Normal quark matter: Bulk viscosity dampsr-mode instability

in a wide range ofT .

CFL quark matter: r-mode is undamped in a narrow window

(5 × 109K≤ T ≤ 5 × 1010K)
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Critical rotation frequency of compact stars

At the critical frequencyΩc, fraction of energy dissipated/unit time

exactly cancels againstr-mode growth by gravitational wave

emission.
1

τ(Ωc)
=

[
1

τζ

+
1

τη

+
1

τGW

]

(Ωc) = 0
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Critical rotation frequency of compact stars

At the critical frequencyΩc, fraction of energy dissipated/unit time

exactly cancels againstr-mode growth by gravitational wave
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Critical rotation frequency of compact stars
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Results: Limits on rotation

Neutron starsare stable against ther-mode instability at very

high (T & 1010 K) or very low temperatures (T . 107 K).

Neutron stars are spun down rapidly by ther-mode instability

shortly after their birth at MeV temperatures.
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Results: Limits on rotation

Neutron starsare stable against ther-mode instability at very

high (T & 1010 K) or very low temperatures (T . 107 K).

Neutron stars are spun down rapidly by ther-mode instability

shortly after their birth at MeV temperatures.

Strange stars with non-superfluid quark matterdisplay a

stability window between108K< T < 5 × 109K where they

can spin at a substantial fraction of the Kepler frequency.

Strange stars in the CFL phasecan spin at frequencies close to

the Kepler limit even as they cool below1010K.

LMXB’s with quark matter can spin faster than observed limit
. – p.23/31



Summary

r-mode instability affects all rotating stars;

determines how fast a compact star can spin
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Summary

r-mode instability affects all rotating stars;

determines how fast a compact star can spin

Viscosity dampsr-mode;

new phases of dense matter change(ζ, η) and critical freq.

CFL phase allows most rapid rotation frequencies;

faster than observed LMXBs

Studies ofmixed & heterogenous phases more complicated
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Visualizing r-modes

The angular dependence of the flow (latitude dependence) is

given by magnetic-type vector spherical harmonics:

~Y B
ll = [l(l + 1)]−1/2r∇× (r∇Yll)

Flow of fluid element inr-mode conservesvorticity

d
dt

(

êr.(∇× δ~v) + 2êr.~Ω
)

= 0
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Cepheid variables

Henrietta Leavitt (1908)

Apparent brightness varies

periodically

Absolute luminosity∝

period of oscillation

Density oscillations ionize

He-layer, change opacity
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Cepheid variables

Henrietta Leavitt (1908)

Apparent brightness varies

periodically

Absolute luminosity∝

period of oscillation

Density oscillations ionize

He-layer, change opacity

Hertzsprung:Cepheid variables can be used as standard candles

Hubble:Estimated distance to nearby galaxies
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r-mode instability

An inertial observer measures aneffective r-mode frequency

ω(in)
r = ωrot

r − mΩ = −
(m − 1)(m + 2)

(m + 1)
Ω

Form ≥ 2, a prograde modein the inertial frameappears retrograde

in the rotating frame

Ω

ω  r r

Ω=0

ω  

Erot ↑= Ein ↓ −Ω J ↓ . – p.28/31



Fluid perturbation equations

(perturbed) Variables:

Energy density, Pressureδρ, δP

Velocity δ~v

Grav. PotentialδΦ
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Fluid perturbation equations

(perturbed) Variables:

Energy density, Pressureδρ, δP

Velocity δ~v

Grav. PotentialδΦ
obey equations:

Energy-momentum conservationδ(∇µT
µν)=0

Poisson equation δ(∇2Φ + 4π Gρ)=0

Continuity equation δ(∂µj
µ)=0
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Fluid perturbation equations

(perturbed) Variables:

Energy density, Pressureδρ, δP

Velocity δ~v

Grav. PotentialδΦ
obey equations:

Energy-momentum conservationδ(∇µT
µν)=0

Poisson equation δ(∇2Φ + 4π Gρ)=0

Continuity equation δ(∂µj
µ)=0

Close the system: specify a barotropic Equation of State (EoS):

Pressure vs. densityP = P (ρ) . – p.29/31



Bulk viscosity

PdV dissipation due to chemical re-equilibration over compression

cycle V (t) = V0 + Re[δV eiωt]; P (t) = P0 + Re[δP eiωt] :

phase lag betweenδV andδP due to finite equilibration rate (Γ)

ζ(ω, T ) = C(T )
Γ

Γ2 + ω2
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Bulk viscosity

PdV dissipation due to chemical re-equilibration over compression

cycle V (t) = V0 + Re[δV eiωt]; P (t) = P0 + Re[δP eiωt] :

phase lag betweenδV andδP due to finite equilibration rate (Γ)

ζ(ω, T ) = C(T )
Γ

Γ2 + ω2

Dissipation is maximum when frequency of mode is close to (any)

equilibration rate in the fluid

. – p.30/31



Color superconducting phase

weak attractive interaction between quarks at high density

→ condensate of diquarks with color-flavor structure

3 massless quark flavors: Color-Flavor Locking (CFL)

L ∼ 〈qa
i q

b
j〉L; R ∼ 〈qa

i q
b
j〉R ∼ κǫijkǫ

abk ;

SU(3)c × SU(3)L × SU(3)R × U(1)B → SU(3)c+L+R × Z2
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Color superconducting phase

weak attractive interaction between quarks at high density

→ condensate of diquarks with color-flavor structure

3 massless quark flavors: Color-Flavor Locking (CFL)

L ∼ 〈qa
i q

b
j〉L; R ∼ 〈qa

i q
b
j〉R ∼ κǫijkǫ

abk ;

SU(3)c × SU(3)L × SU(3)R × U(1)B → SU(3)c+L+R × Z2

Alford, Rajagopal and Wilczek (NPB 537, 443 (1999))

Gappedexcitations→ 9 quarks and 8 Higgsed gluons

Ungappedexcitations→ Nambu-Goldstone bosons

A pseudoscalar (color-flavor)octetof mesons;

(like pseudoscalar flavor octet atµq=0): π,K, η
. – p.31/31
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