r-mode instability and spin frequencies of compact stars

Prashanth Jaikumar

Institute of Mathematical Sciences, Chennai

Workshop on Equation of State in Astrophysics Argonne National Laboratory [August 25-29, 2008]

Visiting Scientist at Argonne National Laboratory, (2008)

Chennai (Madras)

IMSc (1967-)

Collaborators on this work

Gautam Rupak

North Carolina State University \Rightarrow Mississippi State University

Andrew W. Steiner

Michigan State University & JINA

arXiv 0806.1005 (astro-ph)

<u>*r*-modes</u>: sensitivity to the equation of state

<u>*r*-modes</u>: sensitivity to the equation of state

■ Viscosity and *r*-mode damping

<u>*r*-modes</u>: sensitivity to the equation of state

■ Viscosity and *r*-mode damping

Neutron stars with/without quark matter: distinctions

<u>*r*-modes</u>: sensitivity to the equation of state

■ Viscosity and *r*-mode damping

Neutron stars with/without quark matter: distinctions

How fast can such compact stars spin?

Stellar Oscillations

<u>*r*-modes</u>: Coriolis force $(\vec{\Omega} \times \vec{v})$ term in rotating stars

p-modes: Pressure fluctuations, convective instability

g-modes: Buoyancy (gravity) smooths out inhomogeneity

Stellar Oscillations

Oscillation modes are classified by nature of restoring force \underline{r} -modes: Coriolis force $(\vec{\Omega} \times \vec{v})$ term in rotating stars \underline{p} -modes: Pressure fluctuations, convective instability \underline{g} -modes: Buoyancy (gravity) smooths out inhomogeneity

f-modes (no radial node): Cepheid variables \Rightarrow distance estimators

p-modes: used in helioseismography; verified standard solar model.

Oscillations of compact stars

Perturbations trigger oscillations

Core-collapse: Neutron stars born in oscillatory state Crust-breaking and glitches lead to oscillations Interactions with companion/rapid mass-transfer Second collapse: phase transition to quark matter?

Oscillations of compact stars

Perturbations trigger oscillations

- Core-collapse: Neutron stars born in oscillatory state Crust-breaking and glitches lead to oscillations Interactions with companion/rapid mass-transfer
 - Second collapse: phase transition to quark matter?

stellar oscillations occur in a variety of astrophysical processes

- 1. What are the characteristic frequencies?
- 2. Information on structure of interior
- 3. Observations: spin rates, gravitational waves

Oscillatory solutions in non-rotating stars

Perturbed Euler equation (linearized)

$$\partial_t (\delta \vec{v}) + \delta \vec{v} \cdot \nabla \vec{v} = -\nabla \left(\frac{\delta P}{\rho} - \delta \Phi \right)$$

Seek solutions of the form

$$\delta \vec{v}_{\perp} = f(r) \vec{Y}_{lm}(\theta, \phi) e^{i\omega_r t}; \quad \delta v_r \approx 0$$

 $\vec{Y}_{lm} \propto (\vec{r} \times \nabla) Y_{lm}$ are vector spherical harmonics

Oscillatory solutions in non-rotating stars

Perturbed Euler equation (linearized)

$$\partial_t (\delta \vec{v}) + \delta \vec{v} \cdot \nabla \vec{v} = -\nabla \left(\frac{\delta P}{\rho} - \delta \Phi \right)$$

Seek solutions of the form

$$\delta \vec{v}_{\perp} = f(r) \vec{Y}_{lm}(\theta, \phi) e^{i\omega_r t}; \quad \delta v_r \approx 0$$

 $\vec{Y}_{lm} \propto (\vec{r} \times \nabla) Y_{lm}$ are vector spherical harmonics

Solutions can be classified by parity:

Spheroidal: transform as $(-1)^{l}$ (*p*,*g*-modes) Toroidal: transform as $(-1)^{l+1}$ (*r*-modes) **Oscillatory solutions in rotating stars**

Additional Coriolis force term: $2(\vec{\Omega} \times \delta \vec{v})$

In the fluid rest-frame, fluid displacement $\vec{\xi} = \int_0^t dt \, \delta \vec{v}$ obeys:

$$-\omega_r^2 \vec{\xi} + 2i\omega_r (\vec{\Omega} \times \vec{\xi}) = -\nabla \left(\frac{\delta P}{\rho} - \delta \Phi\right)$$

Employ the "Cowling approximation" for small Ω : ($\delta \Phi = 0$)

$$\omega_r = \frac{2m\Omega}{l(l+1)}$$

Oscillatory solutions in rotating stars

Additional Coriolis force term: $2(\vec{\Omega} \times \delta \vec{v})$

In the fluid rest-frame, fluid displacement $\vec{\xi} = \int_0^t dt \, \delta \vec{v}$ obeys:

$$-\omega_r^2 \vec{\xi} + 2i\omega_r (\vec{\Omega} \times \vec{\xi}) = -\nabla \left(\frac{\delta P}{\rho} - \delta \Phi\right)$$

Employ the "Cowling approximation" for small Ω : ($\delta \Phi = 0$)

$$\omega_r = \frac{2m\Omega}{l(l+1)}$$

To leading order in Ω (stellar rotation frequency), there is NO dependence on the equation of state.

r-mode: sensitivity to EoS

expand variables to $\mathcal{O}(\Omega^2)$: rotation modifies structure

$$\rho(r,\theta) = \rho_0(r) + \rho_2(r,\cos\theta) \frac{\Omega^2}{\pi G\bar{\rho_0}} + \mathcal{O}(\Omega^4)$$

$$\Phi(r,\theta) = \Phi_0(r) + \Phi_2(r,\cos\theta) \frac{\Omega^2}{\pi G\bar{\rho_0}} + \mathcal{O}(\Omega^4)$$

The *r*-mode frequency becomes:

$$\omega_r = \frac{2m\Omega}{l(l+1)} \left[1 - \kappa \frac{\Omega^2}{\pi G \bar{\rho_0}} \right]; \quad 0.1 \le \kappa \le 0.4$$

r-mode: sensitivity to EoS

expand variables to $\mathcal{O}(\Omega^2)$: rotation modifies structure

$$\rho(r,\theta) = \rho_0(r) + \rho_2(r,\cos\theta) \frac{\Omega^2}{\pi G\bar{\rho_0}} + \mathcal{O}(\Omega^4)$$

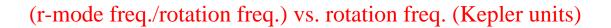
$$\Phi(r,\theta) = \Phi_0(r) + \Phi_2(r,\cos\theta) \frac{\Omega^2}{\pi G\bar{\rho_0}} + \mathcal{O}(\Omega^4)$$

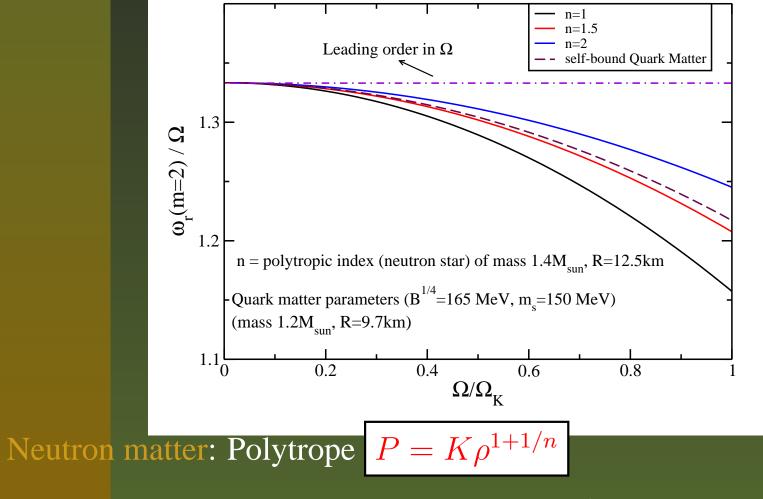
The *r*-mode frequency becomes:

$$\omega_r = \frac{2m\Omega}{l(l+1)} \left[1 - \kappa \frac{\Omega^2}{\pi G \bar{\rho_0}} \right]; \quad 0.1 \le \kappa \le 0.4$$

 κ depends on the density profile and radius of the star: EoS dependence enters.

r-mode frequency





Self-bound Quark matter: Bag model ($m_s \neq 0$)

Contribution of gravitational waves to r-modes:

$$\left(\frac{dE}{dt}\right)_{\rm GW} \propto -\sum_{m\geq 2} (\omega_r - m\Omega)^{2m+1} \omega_r |\underbrace{\delta J_{mm}}^2]$$

current multipole

For $m \ge 2$, $\omega_r < m\Omega$, so the *r*-mode energy grows with gravitational wave emission, triggering the instability.

Viscosity and *r***-modes**

Energy of r-mode is dissipated by bulk (ζ) and shear (η) viscosity

$$T_{ij} = \underbrace{\zeta}_{\sigma} \underbrace{\partial_k v_k}_{\sigma} \delta_{ij} + \underbrace{\eta}_{\sigma} \underbrace{(\partial_i v_j + \partial_j v_i - \frac{2}{3} \partial_k v_k \delta_{ij}) - P \delta_{ij}}_{\sigma_{ij}}$$

The energy contained in an r-mode is given by:

$$E_r \propto R^4 \Omega^2 \int_0^R dr \ \rho_0(r) \left(\frac{r}{R}\right)^{2m+2} + \mathcal{O}(\Omega^4)$$

...and is dissipated at the rate

$$\frac{dE}{dt} = -\int (2\eta\delta\sigma^{ij}\delta\sigma_{ij} + \zeta\delta\sigma\delta\sigma)d^3r$$

r-mode timescales

The timescale associated to growth or dissipation (τ) is given by

$$\frac{1}{\tau_i} = -\frac{1}{E} \left(\frac{dE}{dt} \right)_i; \quad i = \text{GW}, \zeta, \eta$$

r-mode timescales

The timescale associated to growth or dissipation (τ) is given by

$$\frac{1}{\tau_i} = -\frac{1}{E} \left(\frac{dE}{dt} \right)_i; \quad i = \text{GW}, \zeta, \eta$$

 $\tau_{\zeta,\eta} \gg \tau_{\rm GW}$: r-modes will be effective in spinning down the star

 $\tau_{\zeta,\eta} \ll \tau_{\rm GW}$: *r*-modes are quickly damped; star can spin rapidly!

r-mode Recap

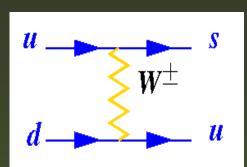
r-mode oscillations is generic to all rotating stars (Coriolis force)

The *r*-mode is unstable to gravitational-wave emission for all $m \ge 2$

r-mode is damped by viscosity;
exploit dependence of ζ , η on EoS

Bulk viscosity (ungapped quarks)

r-modes are low-frequency modes (\sim kHz) so only weak reactions are out of equilibrium $d + u \leftrightarrow u + s$:



 $(\mu_d - \mu_s)$ oscillates about equilibrium value $\bar{\mu}(=0)$

Bulk viscosity (ungapped quarks)

r-modes are low-frequency modes (~kHz) so only weak reactions are out of equilibrium $d + u \leftrightarrow u + s$: $u \rightarrow u + s$ $u \rightarrow u + s$

For small perturbation amplitudes (J. Madsen, PRD 46, 3290 (1992))

$$\zeta(\omega,T) = \frac{\alpha T^2}{\beta T^4 + \omega^2}$$

Bulk viscosity of CFL (Alford et al., PRC 75, 055209 (2007))

 Lightest excitations in CFL are *H*-boson (superfluid phonon) and *K* (kaon)

$$m_H = 0; \quad m_{K^0} \sim \frac{\Delta}{\mu_q} \sqrt{m_u (m_d + m_s)}$$

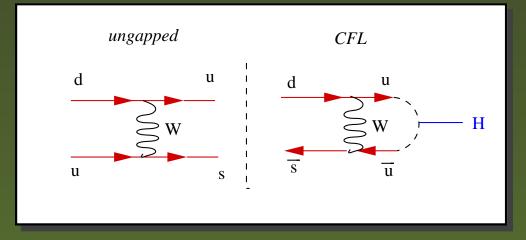
CFL Flavor re-equilibration : $K^0 \to HH, K^0H \to H$

Bulk viscosity of CFL (Alford et al., PRC 75, 055209 (2007))

Lightest excitations in CFL are *H*-boson (superfluid phonon) and *K* (kaon)

$$m_H = 0; \quad m_{K^0} \sim \frac{\Delta}{\mu_q} \sqrt{m_u (m_d + m_s)}$$

• CFL Flavor re-equilibration : $K^0 \rightarrow HH, K^0H \rightarrow H$ effectively converts <u>d</u>own quark to <u>s</u>trange quark



Shear viscosity

measures ease of momentum transport perpendicular to flow

ungapped quark matter: η determined by qq scattering

gapped (CFL) quark matter: η determined by small-angle

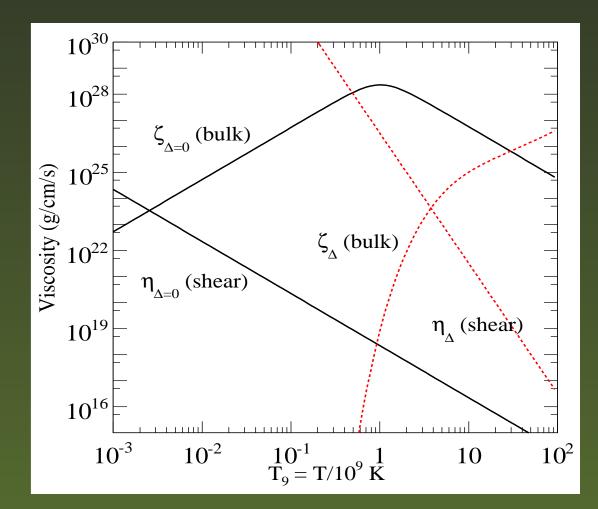
phonon (*H*-boson) collisions

$$\eta \approx 10^{-2} \frac{\mu^8}{T^5}$$

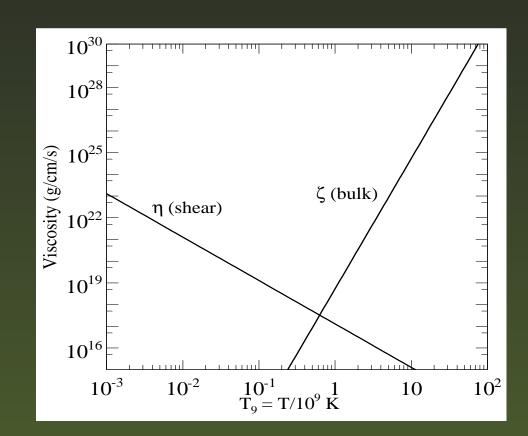
(C. Manuel et al., JHEP 0509, 076 (2005))

Viscosities in Quark Matter

$\Delta = 0$ (normal quark matter); $\Delta > 0$ (gapped quark matter)



Viscosity of neutron matter

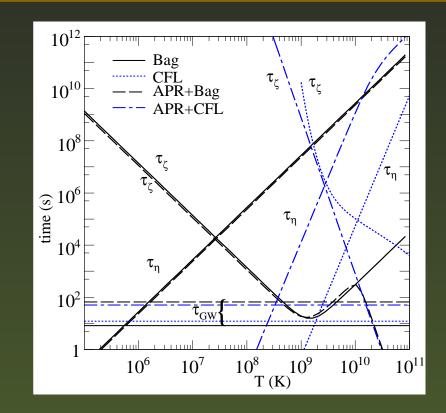


The bulk viscosity is controlled by the modified urca process:

 $n + n \rightarrow n + p + e^- + \bar{\nu}_e$ ($\zeta \propto T^6$)

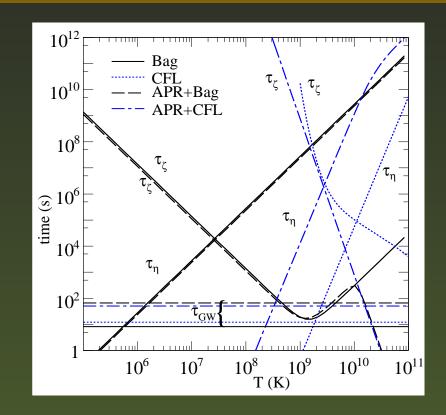
The shear viscosity is determined by nn scattering in non-superfluid matter ($\eta \propto 1/T^2$); by $ee, e\mu$ scattering in superfluid matter .-p.19/31

r-mode damping timescales ($\Omega = \Omega_K$)



Normal quark matter: Bulk viscosity damps r-mode instability in a wide range of T.

r-mode damping timescales ($\Omega = \Omega_K$)



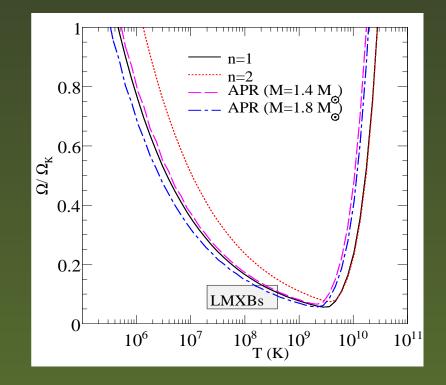
- Normal quark matter: Bulk viscosity damps r-mode instability in a wide range of T.
- **CFL quark matter:** *r*-mode is undamped in a narrow window $(5 \times 10^9 \text{K} \le T \le 5 \times 10^{10} \text{K})$

At the critical frequency Ω_c , fraction of energy dissipated/unit time exactly cancels against *r*-mode growth by gravitational wave emission.

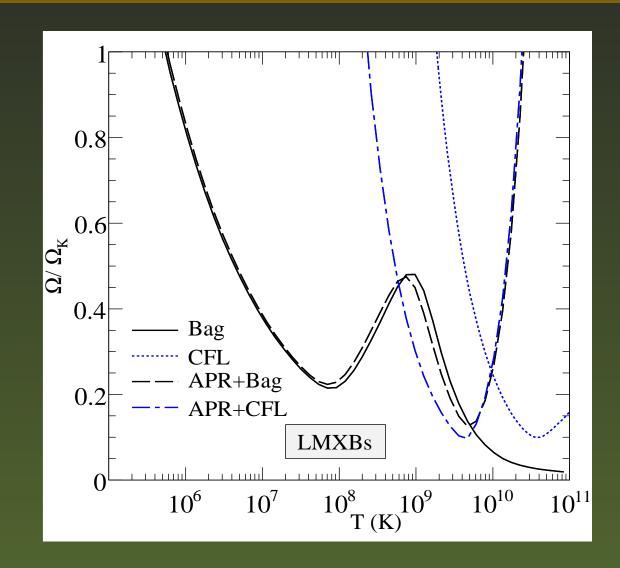
$$\frac{1}{\tau(\Omega_c)} = \left[\frac{1}{\tau_{\zeta}} + \frac{1}{\tau_{\eta}} + \frac{1}{\tau_{\rm GW}}\right](\Omega_c) = 0$$

At the critical frequency Ω_c , fraction of energy dissipated/unit time exactly cancels against *r*-mode growth by gravitational wave emission.

$$\frac{1}{\tau(\Omega_c)} = \left[\frac{1}{\tau_{\zeta}} + \frac{1}{\tau_{\eta}} + \frac{1}{\tau_{\rm GW}}\right](\Omega_c) = 0$$



Critical rotation frequency of compact stars



Results: Limits on rotation

Neutron stars are stable against the *r*-mode instability at very high $(T \ge 10^{10} \text{ K})$ or very low temperatures $(T \le 10^7 \text{ K})$. Neutron stars are spun down rapidly by the *r*-mode instability shortly after their birth at MeV temperatures.

Results: Limits on rotation

- Neutron stars are stable against the *r*-mode instability at very high ($T \ge 10^{10}$ K) or very low temperatures ($T \le 10^7$ K). Neutron stars are spun down rapidly by the *r*-mode instability shortly after their birth at MeV temperatures.
- Strange stars with non-superfluid quark matter display a stability window between $10^8 \text{K} < T < 5 \times 10^9 \text{K}$ where they can spin at a substantial fraction of the Kepler frequency.

Results: Limits on rotation

- Neutron stars are stable against the *r*-mode instability at very high ($T \ge 10^{10}$ K) or very low temperatures ($T \le 10^7$ K). Neutron stars are spun down rapidly by the *r*-mode instability shortly after their birth at MeV temperatures.
- Strange stars with non-superfluid quark matter display a stability window between $10^8 \text{K} < T < 5 \times 10^9 \text{K}$ where they can spin at a substantial fraction of the Kepler frequency.
- Strange stars in the CFL phase can spin at frequencies close to the Kepler limit even as they cool below 10¹⁰K. LMXB's with quark matter can spin faster than observed limit

Summary

r-mode instability affects all rotating stars;

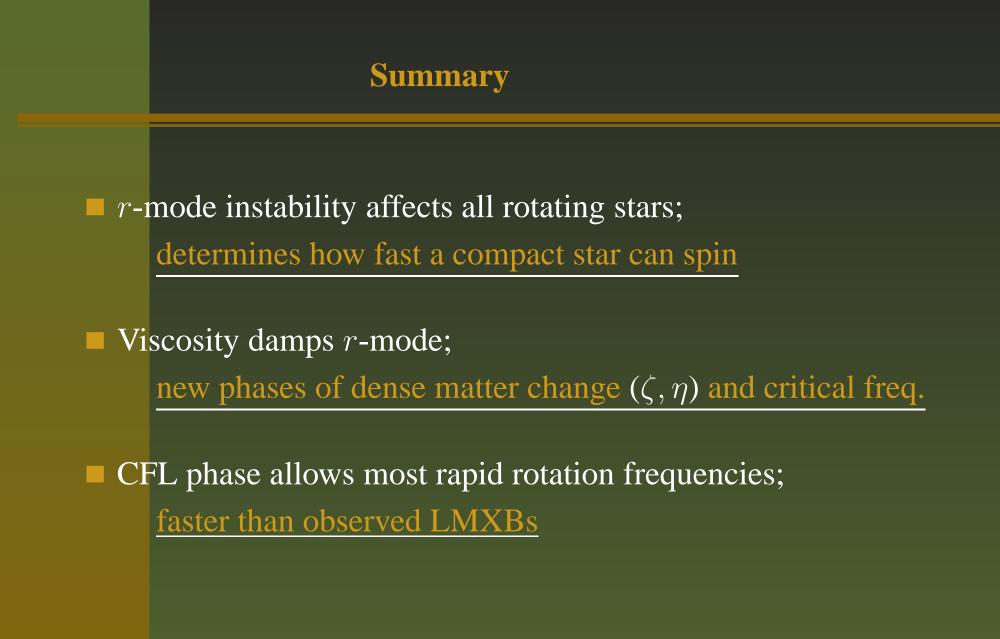
determines how fast a compact star can spin

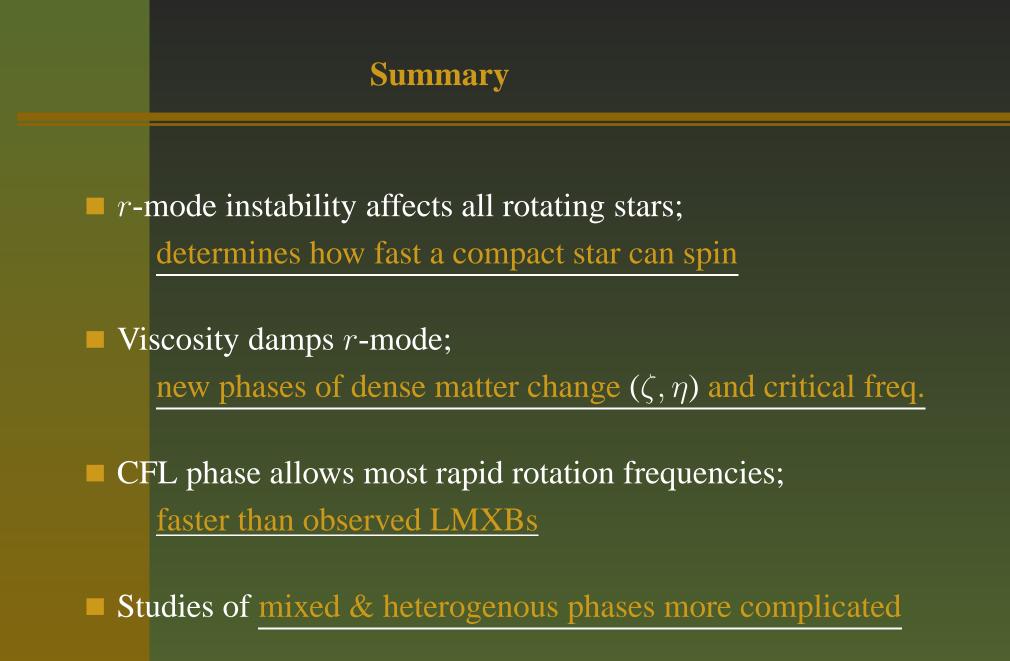
r-mode instability affects all rotating stars;

determines how fast a compact star can spin

Viscosity damps *r*-mode;

new phases of dense matter change (ζ , η) and critical freq.





Recent works

- Viscosity and *r*-modes of 2SC, CSL phases
 B. Sa'd, arXiv:0806.3359
- Viscosity from urca (d → u + e⁻ + v
 _e) process in quark matter
 B. Sa'd, I. Shovkovy and D. Rischke, PRD 75 (2007) 125004
- Viscosity and *r*-modes of Kaon-condensed phases (n, p, K)
 - D. Chatterjee and D. Bandyopadhyay, PRD 75 (2007) 123006
- Viscosity of Kaon-condensed CFL (moderate density)
 M. Alford, M. Braby & A. Schmitt, arXiv:0806.0285
- Mutual friction of the CFL phase (r-modes undamped)
 M. Mannarelli, C. Manuel & B. Sa'd, arXiv:0807.3264

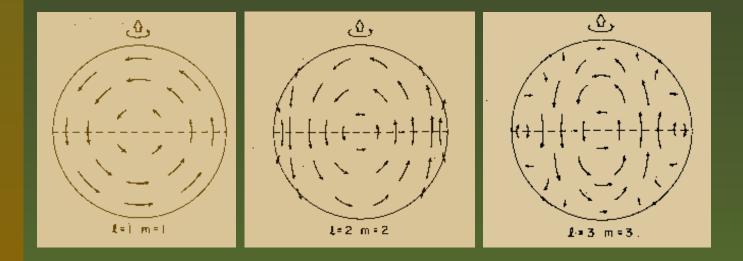
Visualizing *r***-modes**

The angular dependence of the flow (latitude dependence) is given by magnetic-type vector spherical harmonics:

 $\vec{Y}_{ll}^B = [l(l+1)]^{-1/2} r \nabla \times (r \nabla Y_{ll})$

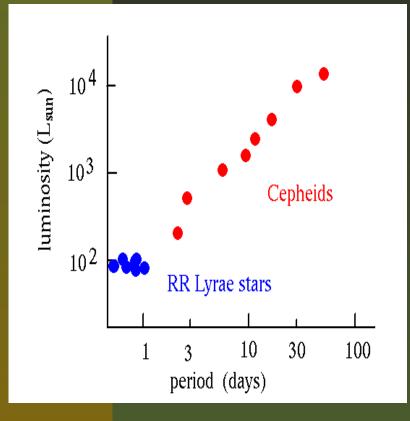
Flow of fluid element in *r*-mode conserves vorticity

$$\frac{d}{dt}\left(\hat{e}_r.(\nabla \times \delta \vec{v}) + 2\hat{e}_r.\vec{\Omega}\right) = 0$$



Cepheid variables

Henrietta Leavitt (1908)

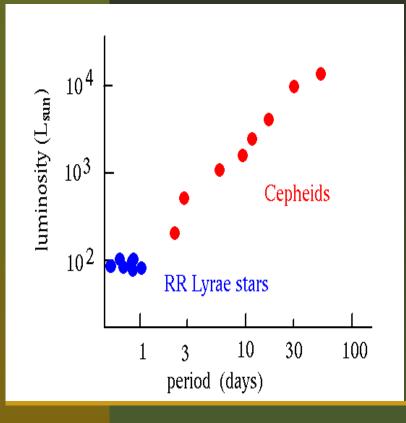


Apparent brightness varies periodically
Absolute luminosity ∝ period of oscillation
Density oscillations ionize

He-layer, change opacity

Cepheid variables

Henrietta Leavitt (1908)



Apparent brightness varies periodically Absolute luminosity \propto period of oscillation

Density oscillations ionize He-layer, change opacity

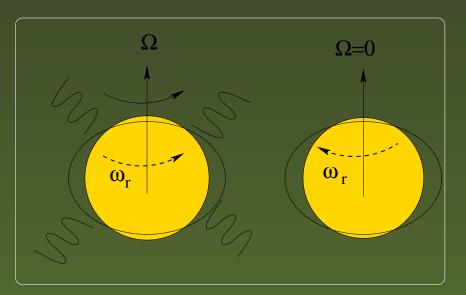
Hertzsprung: Cepheid variables can be used as standard candles Hubble: Estimated distance to nearby galaxies

r-mode instability

An inertial observer measures an *effective* r-mode frequency

$$\omega_r^{(in)} = \omega_r^{rot} - m\Omega = -\frac{(m-1)(m+2)}{(m+1)}\Omega$$

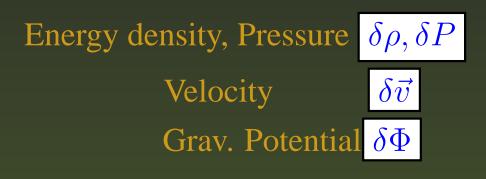
For $m \ge 2$, a prograde mode in the inertial frame appears retrograde in the rotating frame



$$E^{rot} \uparrow = E^{in} \downarrow -\Omega \ J \downarrow$$

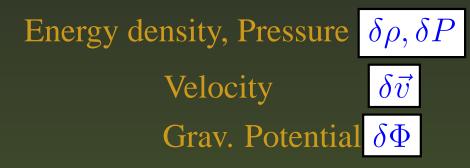
Fluid perturbation equations

(perturbed) Variables:

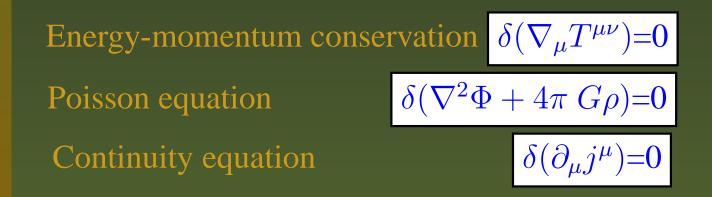


Fluid perturbation equations

(perturbed) Variables:

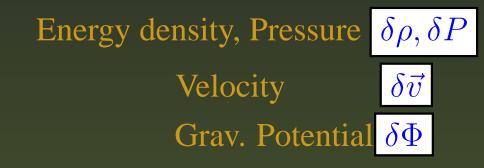


obey equations:

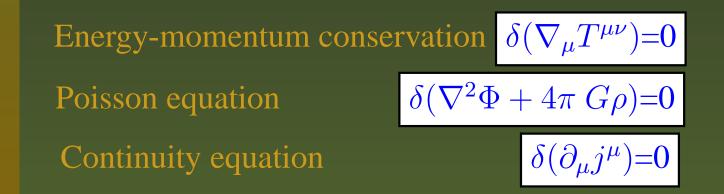


Fluid perturbation equations

(perturbed) Variables:



obey equations:



Close the system: specify a barotropic Equation of State (EoS):

Pressure vs. density $P = P(\rho)$

Bulk viscosity

PdV dissipation due to chemical re-equilibration over compression cycle $V(t) = V_0 + \text{Re}[\delta V e^{i\omega t}];$ $P(t) = P_0 + \text{Re}[\delta P e^{i\omega t}]$:

phase lag between δV and δP due to finite equilibration rate (Γ)

$$\zeta(\omega, T) = C(T) \frac{\Gamma}{\Gamma^2 + \omega^2}$$

Bulk viscosity

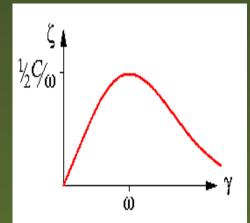
PdV dissipation due to chemical re-equilibration over compression

cycle
$$V(t) = V_0 + \operatorname{Re}[\delta V e^{i\omega t}];$$
 $P(t) = P_0 + \operatorname{Re}[\delta P e^{i\omega t}]$

phase lag between δV and δP due to finite equilibration rate (Γ)

$$\zeta(\omega,T) = C(T) \frac{\Gamma}{\Gamma^2 + \omega^2}$$

Dissipation is maximum when frequency of mode is close to (any) equilibration rate in the fluid



Color superconducting phase

weak attractive interaction between quarks at high density \rightarrow condensate of diquarks with color-flavor structure

3 massless quark flavors: Color-Flavor Locking (CFL)

 $L \sim \langle q_i^a q_j^b \rangle_L; \quad R \sim \langle q_i^a q_j^b \rangle_R \sim \kappa \epsilon_{ijk} \epsilon^{abk}$;

 $SU(3)_c \times SU(3)_L \times SU(3)_R \times U(1)_B \to SU(3)_{c+L+R} \times Z_2$

Color superconducting phase

weak attractive interaction between quarks at high density \rightarrow condensate of diquarks with color-flavor structure 3 massless quark flavors: Color-Flavor Locking (CFL) $L \sim \langle q_i^a q_j^b \rangle_L; \quad R \sim \langle q_i^a q_j^b \rangle_R \sim \kappa \epsilon_{ijk} \epsilon^{abk}$; $SU(3)_c \times SU(3)_L \times SU(3)_R \times U(1)_B \to SU(3)_{c+L+R} \times Z_2$ Alford, Rajagopal and Wilczek (NPB 537, 443 (1999)) Gapped excitations \rightarrow 9 quarks and 8 Higgsed gluons Ungapped excitations→ Nambu-Goldstone bosons A pseudoscalar (color-flavor) octet of mesons; (like pseudoscalar flavor octet at $\mu_q=0$): π, K, η