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Charge Symmetry & Charge Invariance

Charge symmetry: invariance of nuclear interactions under
n↔ p interchange
An isoscalar quantity F does not change under n↔ p
interchange. Example: nuclear energy. Expansion in
η = (N − Z )/A for smooth F , has even terms only:

F (η) = F0 + F2 η
2 + F4 η

4 + . . .

An isovector quantity G changes sign. Example:
ρnp(r) = ρn(r)− ρp(r). Expansion with odd terms only:

G(η) = G1 η + G3 η
3 + . . .

Note: G/η = G1 + G3 η
2 + . . ..

Charge invariance: invariance of nuclear interactions under
rotations in n-p space
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Tools

Qualitative Considerations/Semiempirical Energy Formula
Hohenberg-Kohn Energy Functional
Spherical and Half-Infinite Matter Skyrme-HF
Spherical and Half-Infinite Matter Thomas-Fermi
Energies of Isobaric Analog States
Asymmetry Skins
Charge Radii & Distributions
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Symmetry Energy: From Finite to∞ System

Skyrme Interactions

Empirical correlation for
neutron stars
R P−1/4 ≈ const
Lattimer&Prakash ApJ550(01)

η = (ρn − ρp)/ρ-expansion
under n↔ p symmetry

E(ρn, ρp) = E0(ρ)+S(ρ)

(
ρn − ρp

ρ

)2

S(ρ) = aV
a +

L
3
ρ− ρ0

ρ0
+ . . .

In neutron matter: E ' E0 + S
& P ' ρ2 dS/dρ ' L ρ2/(3ρ0)
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Finite System

Interrelation between
nucleonic densities. . .
Net density: ρ(r)

?
= A

Z ρp(r)

Bethe-Weizsäcker formula:

E = −aV A + aS A2/3 + aC
Z 2

A1/3 +aa(A)
(N − Z )2

A
+Emic

aa
?
= aV

a
A
aa

= A
aV

a
+ A2/3

aS
a

aa(A) =?

minimally finite system ⇒ half-infinite matter
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Nucleus as Capacitor for Asymmetry
E = −av A + as A2/3 +

aa

A
(N − Z )2

= E0(A) +
aa(A)

A
(N − Z )2

Capacitor analogy

E = E0 +
Q2

2C
⇒


Q ≡ N − Z

C ≡ A
2aa(A)

Asymmetry chemical potential

µa =
∂E

∂(N − Z )
=

2aa(A)

A
(N − Z )

Analogy

V =
Q
C
⇒ V ≡ µa

Note: for connected capacitors, charge (asymmetry)
distributes itself in proportion to capacitance
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Invariant Densities
Net density ρ(r) = ρn(r) + ρp(r) is isoscalar⇒ weakly depends
on (N − Z ) for given A. (Coulomb suppressed. . . )

ρnp(r) = ρn(r)− ρp(r) isovector but A ρnp(r)/(N − Z ) isoscalar!
A/(N − Z ) normalizing factor global. . . Similar local normalizing
factor, in terms of intense quantities, 2aV

a /µa, where aV
a ≡ S(ρ0)

Asymmetric density (formfactor for isovector density) defined:

ρa(r) =
2aV

a
µa

[ρn(r)− ρp(r)]

Normal matter ρa = ρ0. Both ρ(r) & ρa(r) weakly depend on η!

In any nucleus:

ρn,p(r) =
1
2
[
ρ(r)± µa

2aV
a
ρa(r)

]
where ρ(r) & ρa(r) have universal features!
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Nuclear Densities

ρn,p(r) =
1
2
[
ρ(r)± µa

2aV
a
ρa(r)

]
Net isoscalar density ρ usually parameterized w/Fermi function

ρ(r) =
1

1 + exp
( r−R

d

) with R = r0 A1/3

Isovector density ρa?? Related to aa(A) & to S(ρ)!
A

aa(A)
=

2(N − Z )

µa
= 2

∫
dr
ρnp

µa
=

1
aV

a

∫
dr ρa(r)

In uniform matter

µa =
∂E

∂(N − Z )
= 2

S(ρ)

ρ
ρnp

ρ/2S(ρ) - density
of capacitance

⇒ ρa=
2aV

a
µa

ρnp =
aV

a ρ

S(ρ)

n&p densities carry record of S(ρ)! =⇒ HF calcs of half-∞ matter
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Half-Infinite Matter in Skyrme-Hartree-Fock
To one side infinite uniform matter & vacuum to the other

Wavefunctions: Φ(rrr) = φ(z) eikkk⊥·rrr⊥

matter interior/exterior:

φ(z) ∝ sin (kz z + δ(kkk))

φ(z) ∝ e−κ(kkk)z

Discretization in kkk -space. Set of 1D HF eqs solved using
Numerov’s method until self-consistency:

− d
dz

B(z)
d

dz
φ(z) +

(
B(z) k2

⊥ + U(z)
)
φ(z) = ε(kkk)φ(z)

Before: Farine et al, NPA338(80)86
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Isoscalar (Net) & Isovector Densities from SHF
Results for different
Skyrme interactions
in half-infinite
matter.

Net & isovector
densities displaced
relative to each
other.

As symmetry energy
changes gradually,
so does
the displacement.
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Asymmetry Dependence of Net Density

Results for different
asymmetries
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Asymmetry Dependence of Isovector Density

ρa =
2aV

a
µa

(ρn − ρp)

Results for different
asymmetries

Symmetry Energy Pawel Danielewicz



Introduction Energy & Densities Half-∞ Matter aa(A) from Data Skin Size Conclusions

Sensitivity to S(ρ)

For weakly
nonuniform matter,
expected
asymmetric density
ρa = ρaV

a /S(ρ)

Isovector density ρa
oscillates around the
expectation down to
ρ ' ρ0/4
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WKB Analysis

Semiclassical
wavefunction

φkkk∞(z) ∝


sin
( ∫ z0

z
kz(z ′) dz ′

)
allowed z < z0

exp
(
−
∫ z

z0

κz(z ′) dz ′
)

forbidden z > z0

Density from ρα(z) =

∫
dkkk∞ |φkkk∞α(z)|2

Findings:

At z < z0 ρa(z) ≈ aV
a ρ

S(ρ)

(
1 +

ρ2/3

S(ρ)
F
)

where F(z) ∝ sin (2kF (z0 − z)), describing Friedel oscillations
around ρ/S, up to the classical return point z0.
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Skyrme Parameters
Name aV m∗/m K aV

a L aS aS
a ∆R

SkT -15.40 0.602 333 24.8 28.2 14.2 17.5 0.477
SkT1 -15.98 1.000 236 32.0 56.2 18.2 14.6 0.799
SkT2 -15.94 1.000 235 32.0 56.2 18.0 14.7 0.794
SkT3 -15.94 1.000 235 31.5 55.3 17.7 15.3 0.776
SkT4 -15.95 1.000 235 35.4 94.1 18.1 11.5 0.986
SkT5 -16.00 1.000 201 37.0 98.5 18.1 10.9 1.084
SkM1 -15.77 0.789 216 25.1 -35.3 17.4 59.6 0.180
SkI1 -15.95 0.693 242 37.5 161.0 17.4 11.4 1.126
Gσ -15.59 0.784 237 31.3 94.0 16.0 10.1 0.929
Rσ -15.59 0.783 237 30.5 85.7 16.0 10.5 0.888
T -15.93 1.000 235 28.3 27.2 17.7 22.6 0.587
Z -15.97 0.842 330 26.8 -49.7 17.7 51.5 0.213
Zσ -15.88 0.783 233 26.6 -29.3 17.0 46.6 0.233
Zσσ -15.96 0.775 234 28.8 -4.5 17.3 29.3 0.406
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Symmetry Coefficient
surface region

A
aa(A)

=
1

aV
a

∫
d3r ρa(r) =

1
aV

a

∫
d3r ρ(r) +

1
aV

a

∫
d3r (ρa − ρ)(r)

' A
aV

a
+

A2/3

aS
awhere

aV
a

aS
a

= 4π r2
0

∫
dr (ρa − ρ)(r)

' 3 ∆R
r0

and ∆R is displacement
of isovector and isoscalar
surfaces.

⇒ 1
aa(A)

' 1
aV

a
+

A−1/3

aS
a

aS
a − L Correlation f/SHF
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Charge Invariance
?aa(A)? Conclusions on sym-energy details, following
E-formula fits, interrelated with conclusions on other terms in
the formula: asymmetry-dependent Coulomb, Wigner & pairing
+ asymmetry-independent, due to (N − Z )/A - A correlations
along stability line (PD NPA727(03)233)!
Best would be to study the symmetry energy in isolation from
the rest of E-formula! Absurd?!
Charge invariance to rescue: lowest nuclear states
characterized by different isospin values (T ,Tz),
Tz = (Z − N)/2. Nuclear energy scalar in isospin space:

sym energy Ea = aa(A)
(N − Z )2

A
= 4 aa(A)

T 2
z

A

→ Ea = 4 aa(A)
T 2

A
= 4 aa(A)

T (T + 1)

A
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A
= 4 aa(A)

T 2
z

A

→ Ea = 4 aa(A)
T 2

A
= 4 aa(A)

T (T + 1)

A
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aa(A) Nucleus-by-Nucleus
→ Ea = 4 aa(A)

T (T + 1)

A
In the ground state T takes on the lowest possible value
T = |Tz | = |N − Z |/2. Through ’+1’ most of the Wigner term absorbed.

Formula generalized to the lowest state of a given T (e.g.
Jänecke et al., NPA728(03)23). Pairing depends on evenness of T .
?Lowest state of a given T : isobaric analogue state (IAS) of
some neighboring nucleus ground-state.

T=0

T=1

Tz=-1 Tz=1Tz=0

Study of changes in the
symmetry term possible
nucleus by nucleus
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IAS Data Analysis
In the same nucleus:

E2(T2)− E1(T1) =
4 aa

A
{

T2(T2 + 1)− T1(T1 + 1)
}

+Emic(T2,Tz)− Emic(T2,Tz)

?

a−1
a (A) =

4 ∆T 2

A ∆E
= (aV

a )−1 + (aS
a )−1 A−1/3

Data: Antony et al. ADNDT66(97)1

Emic: Koura et al., ProTheoPhys113(05)305
v Groote et al., AtDatNucDatTab17(76)418
Moller et al., AtDatNucDatTab59(95)185
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aa(A) from IAS

Symbol size proportional to relative significance.
∼Linear dependance from A & 20 on.
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Different Shell Corrections

Line: best fit to Koura at A > 20.
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aa vs A

Line: best fit at A > 20.
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Best a(A)-Descriptions

. . . some problems w/extracting aa(A) from SHF for finite nuclei
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Symmetry-Energy Parameters

aV
a = (31.5− 33.5) MeV, aS

a = (9.5− 12) MeV, L ∼ 95 MeV
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Analytic Expression for Skin Size
symmetry energy only Coulomb correction

〈r2〉1/2
n − 〈r2〉1/2

p

〈r2〉1/2 =
A

6NZ
N − Z

1 + A1/3 aS
a /aV

a
− aC

168aV
a

A5/3

N

10
3 + A1/3 aS

a /aV
a

1 + A1/3 aS
a /aV

a

Formula (lines)
vs Typel & Brown
results (symbols)
from
nonrelativistic &
relativistic
mean-field
calculations,
PRC64(01)027302
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Skin Sizes for Sn & Pb Isotopes

Lines - formula predictions, PD NPA727(03)233

Favored ratio aV
a /aS

a ' 32.5/10.8 ' 3.0
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Displacement of Isovector Surface

〈r2〉1/2
n − 〈r2〉1/2

p

' A (N − Z )

4NZ
〈r2〉a − 〈r2〉
〈r2〉1/2
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Conclusions
Symmetry energy weakens as nuclear mass number
decreases; for A & 20, aa(A) ' aV

a /(1 + aV
a /as

a A1/3),
where aV

a = (31.5− 33.5) MeV, aS
a = (9.5− 12) MeV.

Skin sizes in all nuclei quantifiable in terms of single ratio,
already known, aV

a /aS
a ' 3.0. Corresponding L ∼ 95 MeV.

Systematic of proton densities for one A should principally
contain as much info as the skins and even more:
S(ρ) for ρ & ρ0/4.
Issues: shell, pairing, deformation, Coulomb effects.
Two fundamental densities characterize nucleon
distributions in nuclei: isoscalar & isovector. Their surfaces
are displaced from each other by ∆R ' 0.95 fm and
different diffusenesses, d ∼ 0.54 fm and da ∼ 0.40 fm.
Outlook: finite nuclei - Coulomb & shell effects, learning on
finer S(ρ)-details from ρp(r)

Thanks: Jenny Lee
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Half-∞ Matter Binding Formula

Density Tails

Two Skyrme
interactions +
different
asymmetries
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Half-∞ Matter Binding Formula

Modified Binding Formula

E = −aV A + aS A2/3 + aC
Z 2

A1/3 +
aV

a

1 + A−1/3 aV
a /aS

a

(N − Z )2

A

Energy Formula
Performance:
Fit residuals f/light
asymmetric nuclei,
either following the
Bethe-Weizsäcker
formula (open
symbols) or the modified
formula with aV

a /aS
a = 2.8

imposed (closed), i.e. the
same parameter No.
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