Neutron Star Constraints on Cold High-Density Matter

Cole Miller University of Maryland

Outline

- The life of a neutron star
- NS mass estimates

 In binary neutron star systems
 In other binaries
 In other ways
- Light curves and NS radius estimates
- Equation of state or theory of gravity?
- The promise of gravitational waves

Initial Mass of NS

- Core collapse Baryonic mass>1.35M_s Grav mass>1.2M_s
- Unknown amount of fallback (in some cases leads to BH, collapse)
- How much matter can accrete afterwards?

The Eddington Limit

- Limit on accretion rate, when radiation acceleration equals gravitational accel M/(dM/dt)~4x10⁷ yr
- Applicable for photon luminosity Hypercritical applies for neutrino
- But works well for mass transfer from a stellar companion
- What is reasonable total mass accreted?

Mass Transfer Binaries

- ISM accretion minimal
- Two types, comp mass
- High mass: wind transfer, T<10⁷ yr Path for double NS ΔM<0.1 M_s
- Low mass: Roche lobe overflow, T~10⁷⁻⁹ yr WD-NS, MS-NS ΔM up to ~0.5-1 M_s

http://astronomy.nmsu.edu/nicole/teaching/ASTR110/lectures/lecture25/pics/SS433.gif

http://lheawww.gsfc.nasa.gov/users/white/xrb/4u1820_small.gif

Net Result:

Mass of NS can be from about 1.2 M_s to NS maximum. Note: rotation can increase maximum, but no confirmed rate is high enough to change M_{max} significantly.

How can we determine masses?

Binary Orbits

- Mass function: $M_{min} = v^3 P_{orb}/(2\pi G)$
- Post-Keplerian params can break degeneracy Pericenter precession Shapiro delay Orbital decay
- For double NS, no complicating factors Very precise masses! Measure I in future?

Breton et al. 2008

Double NS Masses

- Very tightly clustered M=1.35+-0.1 M_s
- Close to formation mass ($\Delta M < 0.1 M_s$)
- Does this indicate a very low upper limit on masses?
- Or are formation conditions just similar?

http://www.lsw.uni-heidelberg.de/users/mcamenzi/NS_Mass.jpg

NS in Other Binaries: Vela X-1

- High-mass normal stellar companion Tidal effects!
- Could be progenitor of double NS system
- But mass estimate is 1.75 to 2.01 M_s
- Different formation? Or just chance?

Vela X-1, radial velocity curve Quaintrell et al. 2003

Statistical Argument for High Mass

- Globular cluster M5
- Several NS-WD pairs
- Not enough info to know inclinations
 Only lower mass lims
- But, several cases with high lower lims
- P(M>1.7M_s)>99%
 N6440B: M>2M_s?
 But is there bias in the inclination angles?

A Longer Shot: Quasi-Periodic Oscillations

- X-ray intensity from NS LMXBs varies quasiperiodically
- Best model: upper peak close to orbital frequency at some special radius
- Some evidence for ISCO M~2M_s?

Sco X-1 (van der Klis et al. 1996)

A Longer Shot: Quasi-Periodic Oscillations

- X-ray intensity from NS LMXBs varies quasiperiodically
- Best model: upper peak close to orbital frequency at some special radius
- Some evidence for ISCO M~2M_s?

M-R constraints: Miller et al. 1998

Complementary Constraints

- In principle, measurement of speed would add greatly to information
- Modulo minor frame-dragging effects: f~(GM/r³)^{1/2} v~(GM/r)^{1/2}
- Would combine to give independent constraints on mass, orbital (not stellar) radius With frame-dragging, constrain a/M
- How can speed be measured?

Broad Iron Lines

- Iron fluorescence lines are seen from many BH
- Profile affected by Doppler, grav. redshifts, and inclination
- Recently seen from several NS sources
- Constrains spin and speed
- Do not yet have single source with simultaneous QPOs, good line data

Cackett et al. 2007

Ray Tracing and Light Curves

- Rapidly rotating star 300-600 Hz v_{surf}~0.1c SR+GR effects
- Light curve informative about M, R
 Miller & Lamb 1998
 Bogdanov et al. 2007,8
 Many others...

Weinberg, Miller, and Lamb 2001

Caveats and Status of Ray Tracing

- One might think spot shape matters, but for small spots shape is irrelevant
 Broad view of surface, plus light deflection
- Beaming pattern does matter some; choose electron scattering or isotropic emission
- Current constraints are not restrictive, but future large-area instruments might get radius to 5% or better

Emission from Cooling NS

- Old, transiently accreting NS
- e capture releases energy deep in crust (E. Brown talk)
- In principle, continuum fit gives radius for quiescent low-mass X-ray binaries (qLMXBs)
- Distance uncertainty; mitigated if source is in globular cluster

Radii from qLMXB in Globular?

Just statistical errors. Assumes perfect distance knowledge. Fixes mass of star at 1.4 M_s Fixes spectral model (pure hydrogen, no mag field) For best source (#1), 49% of emission in power law; what causes this?

Continuum spectra not great for constraints!

Data assembled from Guillot, Rutledge et al. 2008

EXO 0748 Bursts: Hard EOS?

Ozel 2006

Is the mass robustly $>2M_s$?

No. Too many uncertainties.

- Method: van Paradijs (implemented by Ozel)
- Combine redshift, L_{Edd}, etc. to get M, R
- Interesting, but many complications: Redshift uncertain; L_{Edd} not const; surface emission modeling not clear. Much uncertainty left.

Current Constraints

Again consistent with a nucleonic hard EOS.

Klahn et al. 2006. Combines ISCO, QPO constraints, and thermal radius estimates. Beware of systematics!

Alternate Gravity Theories?

DeDeo & Psaltis 2003

- Keep in mind: strong gravity not tested well
- Therefore, really testing joint hypothesis of EOS and gravity
- Just cautionary, though, and LIGO grav waves will test strong GR very nicely

The Future: Gravitational Waves

- AdLIGO~2013-2018
- Tens of NS-NS/yr ?? of BH-BH, BH-NS
- Get NS masses High masses?
- Radius from NS
 disruptions
- Strange star: different waveforms

Mass and Radius from GW

- For DNS observed with AdLIGO, S/N=10: Total mass to 1% Mass ratio to 10% (5% for 1.5:1 ratio) Expect tens of such pairs per year A few per year at S/N>20
- Radii not as clear currently Simulations need realistic EOS! Reason to expect ΔR/R<10%

Conclusions

- NS masses $> 1.7 M_s$ established pretty well
- Radii still very much up in the air: all current methods suffer from systematics
- Most robust near future method? If M>2M_s established, that will do it Otherwise, I like light curves; simple and robust, just not enough photons now Need large-area X-ray timing, IXO!
- In <10 years, GW obs very important