Nuclear chiral interactions for Quantum Monte Carlo Methods

Maria Piarulli-Washington University, St. Louis Oct 11, 2019

Nuclear Physics

Question: where does the nuclear force which binds nucleons together gets its main characteristics, and how it is rooted in the fundamental theory of strong interactions?

Quantum Chromodynamcs

Atomic nuclei and nucleonic matter

This is not a trivial problem due to the nonperturbative nature of OCD at low energy

Cartoon of the exchange of a pion (OPE) between two nucleons in the quark picture

OPE: describes the long range part of nuclear forces ($r \geqslant 2 \mathrm{fm}$) to describe the net attraction to form bound nuclei

Meson exchange theory: introduced by Yukawa in 1935; in 1947 discovery of a massive particle called pion

Nevertheless Lattice QCD

Nuclear Force from LQCD Inoue et al. PRL 111, 112503 (2013); HALQCD/HPCI

Atomic nuclei and nucleonic matter

LQCD predictions for magnetic moments $A<4$ Beane et al., PRL113, 252001 (2014); NPLQCD

Despite the many advances, LQCD calculations are still limited to small nucleon numbers and/or large prion masses

The basic model of nuclear theory

The basic model of nuclear theory: achieving a comprehensive description of the wealth of data and peculiarities exhibited by nuclear systems

Nucleon-nucleon (NN) and 3N scattering data;
Spectra, properties, and transition of nuclei;
Nucleonic matter equation of state;

Inputs for the basic model:
Many-body interactions
between the constituents

Electroweak current operators:

$$
\begin{aligned}
& H= \sum_{i=1}^{A} \frac{\mathbf{p}_{i}^{2}}{2 m_{i}}+\sum_{i<j=1}^{A} \overbrace{v_{i j}}^{\text {th+exp }}+\sum_{i<j<k=1}^{A} \overbrace{V_{i j k}}^{\text {th+exp }}+\ldots \ldots \\
& \text { One-body } \\
& \text { Two-body (NN) Three-body (3N) } \\
& \overbrace{\mathrm{N}}^{\mathrm{N} \mid \mathrm{N}_{\mathrm{N}}}+\left.\mathrm{N}_{\mathrm{N}}^{\mathrm{N}}\right|_{\mathrm{N}} ^{\mathrm{N}}+\ldots
\end{aligned}
$$

$$
j^{\mathrm{EW}}=\sum_{i=1}^{A} j_{i}+\sum_{i<j=1}^{A} \overbrace{j_{i j}}^{\text {th+exp }}+\sum_{i<j<k=1}^{A} \overbrace{j_{i j k}}^{\text {th+exp }}+\ldots
$$

One-body Two-body
Many-body

Quantum Monte Carlo methods

Goal: $\quad H \Psi\left(\mathbf{R} ; s_{1}, . ., s_{A} ; t_{1}, . ., t_{A}\right)=E \Psi\left(\mathbf{R} ; s_{1}, . ., s_{A} ; t_{1}, . ., t_{A}\right)$

QMC methods: large family of computational methods used to study complex quantum systems

(C)VMC

GFMC light systems $\quad A \leq 12$
AFDMC

CVMC light to medium-
AFDMC heavy nuclei
$A \sim 50$

AFDMC infinite matter $\quad A \rightarrow \infty$ Figure by Diego Lonardoni, LANL

- Work with bare interactions but local r-space representation of the Hamiltonian

$$
\begin{aligned}
\mathbf{k} & =\mathbf{p}^{\prime}-\mathbf{p} & & \text { Local } \\
\mathbf{K} & =\left(\mathbf{p}^{\prime}+\mathbf{p}\right) / 2 & & \text { Non-Local }
\end{aligned}
$$

-Stochastic method: based on recursive sampling of a probability density, statistical errors quantifiable and systematically improvable

QMC: Variational Monte Carlo (VMC)

R.B. Wiringa, PRC 43, 1585 (1991)

Minimize the expectation value of H :

$$
E_{T}=\frac{\left\langle\Psi_{T}\right| H\left|\Psi_{T}\right\rangle}{\left\langle\Psi_{T} \mid \Psi_{T}\right\rangle} \geq E_{0}
$$

Trial wave function (involves variational parameters):

$$
\left|\Psi_{T}\right\rangle=\left[1+\sum_{i<j<k} U_{i j k}\right]\left[S \prod_{i<j}\left(1+U_{i j}\right)\right]\left|\Psi_{J}\right\rangle
$$

$\left|\Psi_{J}\right\rangle=\left[\prod_{i<j} f_{c}\left(r_{i j}\right)\right]\left|\Phi\left(J M T T_{z}\right)\right\rangle$ (s-shell nuclei): Jastrow wave function, fully antisymmetric
$S \prod_{i<j}$: represents a symmetrized product
$U_{i j}=\sum_{p=2,6} u_{p}\left(r_{i j}\right) O_{i j}^{p}:$ pair correlation operators
$U_{i j k}=\sum_{x} \epsilon_{x} V_{i j k}^{x}:$ three-body correlation operators
$\left|\Psi_{T}\right\rangle$ are spin-isospin vectors in 3A dimension with $2^{A}\binom{A}{Z}$

The search in the parameter space is made using COBYLA (Constrained Optimization BY Linear Approximations) algorithm available in NLopt library

QMC: Diffusion Monte Carlo (DMC)

The diffusion Monte Carlo (DMC) method (ex. GFMC or AFDMC) overcomes the limitations of VMC by using a projection technique to determine the true ground-state

The method relies on the observation that Ψ_{T} can be expanded in the complete set of eigenstates of the Hamiltonian according to

$$
\begin{aligned}
& \left|\Psi_{T}\right\rangle=\sum_{n} c_{n}\left|\Psi_{n}\right\rangle \quad H\left|\Psi_{n}\right\rangle=E_{n}\left|\Psi_{n}\right\rangle \\
& \lim _{\tau \rightarrow \infty}|\Psi(\tau)\rangle=\lim _{\tau \rightarrow \infty} e^{-\left(H-E_{0}\right) \tau}\left|\Psi_{T}\right\rangle=c_{0}\left|\Psi_{0}\right\rangle
\end{aligned}
$$

$$
|\Psi(\tau=0)\rangle=\left|\Psi_{T}\right\rangle
$$

where τ is the imaginary time
The evaluation of $\Psi(\tau)$ is done stochastically in small time steps $\Delta \tau(\tau=\mathrm{n} \Delta \tau)$ using a Green's function formulation

Nuclear Hamiltonian: phenomenological formulation of the basic model

Wiringa, Stoks, Schiavilla PRC 51, 38 (1995)
NN: Argonne V18 $v_{18}\left(r_{12}\right)=v_{12}^{\gamma}+v_{12}^{\pi}+v_{12}^{I}+v_{12}^{S}=\sum_{p=1}^{18} v^{p}\left(r_{12}\right) O_{12}^{p}$

- v_{12}^{γ} : pp, np, nn electromagnetic terms
${ }^{-} v_{12}^{\pi}$: one pion exchange (OPE)
-18 spin, tensor, spin-orbit, isospin, etc., operators
- 42 independent parameters controlled by ~4300 np and pp scattering data below 350 MeV lab energy

An Hamiltonian including only AV18 does not provide enough binding in the light-nuclei
J. Carlson et al. NP A401, 59 (1983) S. Pieper et al. PRC 64, 014001 (2001)

3N Urbana/Illinois

- 2 independent parameters controlled by 3H binding energy \& saturation density of symmetric nuclear matter: some problems to describe p-shell nuclei
- 5 independent parameters controlled by ground-state energies of $A \leq 10$

Phenomenological potentials \& QMC

GFMC calculations of the spectra of light-nuclei using AV18 without and with UIX or IL7

Pros: • Suitable for QMC

- Very good description of several nuclear observables: ex. GFMC binding energies up to $A=12$ with AV18+IL7 (GFMC energies: uncertainties within 1-2\%)

Cons: P Phenomenological interactions are phenomenological, not clear how to improve their quality

- They do not provide rigorous schemes to consistently derive NN and 3N forces and compatible electroweak currents

Chiral EFT: from QCD to nuclear systems

S. Weinberg, Phys. Lett. B251, 288 (1990); Nucl. Phys. B363, 3 (1991); Phys. Lett B295, 114 (1992)

Symmetries in particular the approximate chiral symmetry between hadronic d.o.f (π, N, Δ)

Approximate chiral symmetry requires the pion to couple to other pions and to baryons by powers of its momentum

$$
\mathcal{L}_{e f f}=\mathcal{L}^{(0)}+\mathcal{L}^{(1)}+\mathcal{L}^{(2)}+\ldots
$$

Given a power counting scheme
Calculate amplitudes+prescription to obtain potentials + regularization

$$
\mathcal{L}^{(n)} \sim\left(\frac{Q}{\Lambda_{\chi}}\right)^{n} \sim 100 \mathrm{MeV} \text { soft scale }
$$ (of high momentum components)

$\mathcal{L}^{(n)} \sim\left(\frac{Q}{\Lambda_{\chi}}\right)^{n} \sim 100 \mathrm{MeV}$ soft scale
Nuclear forces and currents

Few- and many-body methods: QMC, NCSM,

CC, etc

Nuclear Hamiltonian: Chiral EFT formulation of the basic model

Many of the available versions of chiral potentials are formulated in momentum-space
Gezerlis et al. PRL 111, 032501 2013; PRC 90, 054323 2014;
Lynn et al. PRL 113, 1925012014
Piarulli et al. PRC 91, 024003 2015; PRC 94, 0540072016

Advantages:

- A consistent description of the two- and many-body interactions and currents
- Different processes can be described on the same footing: piN, NN, electroweak processes
- Theoretical UQ due to the truncation in the chiral expansion
- Scheme can be systematically improved

Disadvantages:

- Increase in number of diagrams as we move to higher orders; When do we stop in the chiral expansion? Convergence, power counting, etc....
- Consistency between strong sector and electroweak sector is very hard to achieve
- More LECs appearing when we go up to higher orders; how do we fix them?

"Fist generation" local chiral NN potential with Δ 's

Piarulli et al. PRC 91, 024003 2015; PRC 94, 0540072016

Model for local chiral interaction:

- 26 LECs obtained fitting the pp and np Granada database: two ranges of $\mathrm{E}_{\mathrm{lab}}=125 \mathrm{MeV}$ and 200 MeV , the deuteron BE and the nn scattering length
- To minimizing the X^{2} we have used the Practical Optimization Using No Derivatives (for Squares), POUNDers

Assumptions:

- Neglecting long range component at N3LO; could be justified by the fact we are including Δ-isobar
- Neglecting four nonlocal terms in the contacts at N3LO during the fit procedure; we limited the fitting up to lab energy 200 MeV

Nucleon-Nucleon database

Granada database: consistent database ~ 8000 data up to pion production threshold
Perez at al. Phys. Rev. C 88, 064002 (2013)

model	order	$E_{\text {Lab }}(\mathrm{MeV})$	$N_{p p+n p}$	$\chi^{2} /$ datum
Ia	N3LO	$0-125$	2668	1.05
Ib	N3LO	$0-125$	2665	1.07
IIa	N3LO	$0-200$	3698	1.37
IIb	N3LO	$0-200$	3695	1.37

Models a (b) cutoff $\sim 500 \mathrm{MeV}(600 \mathrm{MeV})$ in momentum-space

Binding energies with only NN

		${ }^{3} \mathrm{H}$		${ }^{4} \mathrm{He}$	
Model	order	E_{0}	$\sqrt{\left\langle r_{p}^{2}\right\rangle}$	E_{0}	$\sqrt{\left\langle r_{p}^{2}\right\rangle}$
b	LO	$-13.407(9)$	1.23	$-55.53(1)$	0.90
b	NLO	$-7.379(4)$	1.69	$-23.04(2)$	1.55
b	N2LO	$-7.574(9)$	1.65	$-23.95(3)$	1.52
b	N3LO	$-7.627(17)$	1.65	$-23.88(5)$	1.53

Piarulli et al. PRC 94, 0540072016
At LO nuclei are significantly overbound: 5 MeV (for ${ }^{3} \mathrm{H}$) and 27 MeV (for ${ }^{4} \mathrm{He}$) more bound of their corresponding exp values (-8.482 MeV and -28.30 MeV)

The NLO contribution is an important correction to the LO results: respectively, $\sim 1 \mathrm{MeV}$ and $\sim 5 \mathrm{MeV}$ underbound compared to their exp values

At N2LO and N3LO the nuclei are still underbound (closer to exp)
\mid LO-NLO $|>|$ NLO-N2LO $|>|$ N2LO-N3LO \mid

Local chiral 3N potential with Δ 's

Inclusion of 3 N forces at N2LO:

1) Fit to:

- $E_{0}\left({ }^{3} \mathrm{H}\right)=-8.482 \mathrm{MeV}$
${ }^{2} a_{n d}=(0.645 \pm 0.010) \mathrm{fm}$

Model	c_{D}	c_{E}
Ia	3.666	-1.638
Ib	-2.061	-0.982
IIa	1.278	-1.029
IIb	-4.480	-0.412

(CD
\&
(CE) $\sim \tau_{i} \cdot \tau_{j}$
2) Fit to:

- $E_{0}\left({ }^{3} \mathrm{H}\right)=-8.482 \mathrm{MeV}$
- GT m.e. in ${ }^{3} \mathrm{H} \beta$-decay

Model	c_{D}	c_{E}
Ia^{*}	$-0.635(255)$	$-0.09(8)$
Ib^{*}	$-4.705(285)$	$0.550(150)$
IIa^{*}	$-0.610(280)$	$-0.350(100)$
IIb^{*}	$-5.250(310)$	$0.05(180)$

Spectra of Light Nuclei: Phenomenology vs χ EFT

$c_{E}<(>) 0$: repulsion (attraction) in light-nuclei (the opposite effect in PNM)
$c_{D}<(>) 0$: repulsion (attraction) in light-nuclei (same effect in PNM but very small)
Model-dependence for NV2+3 up to 5-6\% of the total binding energy: mostly due to the fact that all the four models do not reproduce the spitting in 10B

Model	c_{D}	c_{E}
Ia	3.666	-1.638
Ib	-2.061	-0.982
IIa	1.278	-1.029
IIb	-4.480	-0.412

Energies of Light Nuclei: Model-dependence

Model-dependence for NV2+3 up to 5-6\% of the total binding energy mostly due to the splitting in 10B: this is an issue related to the NNN interaction

Model-dependence for NV2+3 up to 5-6\% of the total binding energy Model-dependence for NV2+3* up to 2-3\% of the total binding energy

M. Piarulli, I. Bombaci, D. Logoteta, A. Lovato, R. B. Wiringa arXiv:1908.04426

Cutoff sensitivity: modest in NV2 models; very large in NV2+3 models Fit type (2)

Model	c_{D}	c_{E}
Ia^{*}	$-0.635(255)$	$-0.09(8)$
Ib^{*}	$-4.705(285)$	$0.550(150)$
IIa^{*}	$-0.610(280)$	$-0.350(100)$
IIb^{*}	$-5.250(310)$	$0.05(180)$

Polarization observables in pd elastic scattering at 3 MeV : HH calculations with the NV2+3 models la-lb (lla-llb), are shown by the green (blue) band. The black dashed line are results obtained with only the two-body interaction NV2-la

Girlanda, Kievsky, Marcucci, Viviani

More sophisticated 3N force??? Different way to fix the 3N??? subleading contact terms in 3N interaction???

Beyond Energy Calculations

Electroweak structure and reactions: Electroweak form factors
Magnetic moments and radii
Electroweak Response functions
Radiative/weak captures
G.T. matrix elements involved in beta decays

Inputs besides nuclear interactions:
Electroweak current operators:

$$
j^{\mathrm{EW}}=\sum_{i=1}^{A} j_{i}+\sum_{i<j=1}^{A} j_{i j}+\sum_{i<j<k=1}^{A} j_{i j k}+\ldots
$$

Current operators constructed in correspondence to the phenomenological interactions based on meson-exchange approach Marcucci et al. PRC 72, 014001 (2005)

Current operators derived in χ EFT: Pastore et al. PRC 78, 064002 (2008), PRC 80, 034004 (2009); Piarulli et al. PRC 87, 014006 (2013), Baroni et al. PRC 93, 015501 (2016); Kölling et al. PRC 86, 047001 (2012), Krebs et al., Ann. Phys. 378, 317 (2017)

Nuclear axial currents and beta-decays in light-nuclei

$(Z, N) \rightarrow(Z+1, N-1)+e+\bar{v}_{e}$

Schiavilla et al. PRC 99, 034005 (2019) Baroni et al. PRC 93, 015501 (2016) Pastore et al. PRC 78, 064002 (2008)

Matrix Element $<\Psi_{f}|\mathrm{GT}| \Psi_{i}>\sim g_{A}$ and decay rate $\sim g_{A}^{2}$
Understanding "quenching" of $\sim g_{A}$
Relevant for neutrinoless double beta decay since rate $\sim g_{A}^{4}$
Nuclear astrophysics (Sun chain reaction)

NVI - database fitted up to $125 \mathrm{MeV}-c_{D}, c_{E}$ fitted to B.E. and $n d$-scattering length (VMC calculations) NVII - database fitted up to $200 \mathrm{MeV}-c_{D}, c_{E}$ fitted to B.E. and $n d$-scattering length (VMC calculations) NVI* - database fitted up to $125 \mathrm{MeV}-c_{D}, c_{E}$ fitted to B.E. and GT triton (VMC calculations) NVII* - database fitted up to $200 \mathrm{MeV}-c_{D}, c_{E}$ fitted to B.E. and GT triton (VMC calculations)

Pastore, Piarulli, Schiavilla, Wiringa, Baroni, Carlson, Gandolfi, in preparation

PRELIMINARY

AV18+IL7 - database fitted up to $350 \mathrm{MeV}-c_{D}$ fitted to GT triton (GFMC calculations) Pastore et al. PRC 97022501 (2018)

Conclusions

We are testing our models of NN+3N interactions with Δ-isobar based on chiral EFT framework in both light-nuclei and infinite nuclear matter

We mainly focused our attention on studying properties of nuclei up to $\mathrm{A}=12$ and EoS of infinite neutron matter

For the time being, we are interested in studying the model-dependence of the nuclear observables by exploring different cutoffs and range of energies used to fit the NN interactions as well as analyzing different strategies fo fit the TNI

It looks like that the formulation of the TNI with only c_{D} and c_{E} terms is too simplistic if we want to have a good descriptions of spectra, properties of light-nuclei, infinite nuclear matter, three-body observables with a certain degree of accuracy

We are investigating the effect of subleading 3 N contact interactions in light-nuclei (we will do so also for infinite nuclear matter)

Theory Alliance

Alessandro Baroni, University of South Carolina, USA Joe Carlson, Los Alamos National Lab, USA Stefano Gandolfi, Los Alamos National Lab, USA Luca Girlanda, University of Salento, Italy Alejandro Kievsky, INFN-Pisa, Italy Alessandro Lovato, INFN-Trento, Italy Laura E. Marcucci, INFN-Pisa, University of Pisa, Italy Saori Pastore,Washington University in St. Louis, USA
 Steven Pieper**, Argonne National Lab, USA (**deceased) Rocco Schiavilla, Old Dominion University/Jefferson Lab, USA Michele Viviani, INFN-Pisa, Italy Robert Wiringa, Argonne National Lab, USA

This is how I like to remember my days here at ANL:

