REVIEWS of MODERN PHYSICS

October-December 2013 Volume 85, Number 4

COLLOQUIUM: LASER PROBING OF NEUTRON-RICH NUCLEI IN LIGHT ATOMS

Published by American Physical Society,

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8

> Zheng-Tian Lu Argonne National Laboratory University of Chicago

Funding: DOE, Office of Nuclear Physics

Quantum Monte Carlo Calculations of Light Nuclei

Halo Nuclei ⁶He and ⁸He

Isotope	Half-life	Spin	Isospin	Core + Valence
He-6	0.8 s	0+	1	$\alpha + 2n$
He-8	0.1 s	0 ⁺	2	$\alpha + 4n$

Quantum Monte Carlo calculation

Nuclear Volume Effect

Atomic Theory of Helium

Drake, Can. J. Phys. (2006); Pachucki & Sapirstein, J. Phys. B (2002)

- Perturbation theory with corrections:
 - relativity
 - QED
 - finite nuclear mass
 - nuclear charge radius
- Uncertainty on transition frequency: ~ MHz
- Uncertainty on isotope shift: (MHz) x (m_e/M_N) \rightarrow kHz

Isotope Shift $dn = dn_{MS} + dn_{FS}$

For $2^{3}S_{1} - 3^{3}P_{2}$ transition @ 389 nm: ⁶He - ⁴He : $\delta v_{6,4} = 43196.171(2) \text{ MHz} - 1.010 (\langle r^{2} \rangle_{c,6} - \langle r^{2} \rangle_{c,4}) \text{ MHz/fm}^{2}$ ⁸He - ⁴He : $\delta v_{8,4} = 64702.509(2) \text{ MHz} - 1.011 (\langle r^{2} \rangle_{c,8} - \langle r^{2} \rangle_{c,4}) \text{ MHz/fm}^{2}$

100 kHz error in IS \rightarrow ~ 1% error in radius

⁶He @ ATLAS (2005)

"As a user of Ptolemy, a code developed by Steve, I appreciate his great contribution to the community." – Xiaodong Tang

He-6 Collaboration

P. Mueller, L.-B. Wang, K. Bailey, J.P. Greene, D. Henderson, R.J. Holt, R. Janssens, C.L. Jiang, Z.-T. Lu, T.P. O'Conner, R.C. Pardo, K.E. Rehm, J.P. Schiffer, X.D. Tang - *Physics, Argonne* G. W. F. Drake - *Univ of Windsor, Canada*

He-8 Collaboration

P. Mueller, K. Bailey, R. J. Holt, R. V. F. Janssens, Z.-T. Lu, T. P. O'Connor, I. Sulai - Physics, Argonne; M.-G. Saint Laurent, J.-Ch. Thomas, A.C.C. Villari - GANIL, Caen, France G. W. F. Drake - Univ of Windsor, Canada L.-B. Wang – Los Alamos Lab

Atom Trapping of ⁶He & ⁸He at GANIL (2007)

He-8 Trapped!

First He-8 Atom June 15th 2007

For $2^{3}S_{1} - 3^{3}P_{2}$ transition @ 389 nm: ⁶He - ⁴He : $\delta v_{6,4} = 43196.171(2) \text{ MHz} - 1.010 (\langle r^{2} \rangle_{c,6} - \langle r^{2} \rangle_{c,4}) \text{ MHz/fm}^{2}$ ⁸He - ⁴He : $\delta v_{8,4} = 64702.509(2) \text{ MHz} - 1.011 (\langle r^{2} \rangle_{c,8} - \langle r^{2} \rangle_{c,4}) \text{ MHz/fm}^{2}$

Field Shifts:

⁶He - ⁴He : $\delta v_{6,4}$ = 1.430 (7) [30] MHz ⁸He - ⁴He : $\delta v_{8,4}$ = 1.020 (42) [45] MHz

Proton and Matter Radii of ⁶He & ⁸He

FIG. 9 (color online). ⁶He point-proton radius vs two-neutron separation energy obtained from a number of GFMC calculations with different initial conditions and three-body potentials.

Steve Pieper wrote in RMP (2013)

GFMC calculations using AV18 with the Illinois V_{ijk} are successful in reproducing the energies of nuclear states for $A \leq 12$ (Pieper, Wiringa, and Carlson, 2004; Pieper, 2005, 2008b). The He isotope energies and corresponding twoneutron separation energies E_{2n} obtained for AV18 + IL7 are given in Table V. Quantities other than energy may converge at a much slower pace. This is particularly true for the radii of weakly bound states. For ⁸He, and especially for 6He, there are long-term fluctuations in the radii as GFMC calculations propagate in imaginary time. These fluctuations are associated with the small two-neutron separation energies; according to the calculations, $E_{sep} = 0.97$ MeV for ⁶He and 1.86 MeV for 8He. Figure 9 displays the results of multiple GFMC calculations with different initial conditions. Even though GFMC can compute the binding energies precisely, its relative errors in E_{sep} are significant since, for ⁶He, E_{sep} is only 3% of the binding energy. For example, changes in the starting wave function Ψ_{T} and other aspects of the GFMC calculations can result in changes of 0.2 MeV in E_{sep} , or a few percent change in the radius. For these weakly bound nuclei, more precise values of radii can be obtained by selecting those calculations that simultaneously yield the experimentally known E_{sep} value, marked with a star in Fig. 9, with its associated range interpreted as an uncertainty of the computed radii. The same procedure is used to get the matter radii r_m (Table VI). The computed point-proton radii

Atom Trap Trace Analysis – Method and Applications in the Earth Sciences

Zheng-Tian Lu

Department of Modern Physics University of Science and Technology of China (USTC)

Hefei National Laboratory for Physical Sciences at the Microscale

CAS Center for Excellence in Quantum Information and Quantum Physics

創

富

白

ICEQT September 2019

Atom Trap Trace Analysis (ATTA) - Krypton

Collaboration of Earth Science and Physics

Radioactive gas isotopes for tracing and dating

- Gas: Even distribution around the world
- Inert: Simple production, transport and deposition process

Water/Ice sample size needed over the years

ATTA Instrument for Kr-81 at USTC

USTC ATTA Lab (2019)

USTC ATTA Lab (2021)

Large Aquifer Systems

- 1. Nubian Aquifer System (NAS)
- 3. Murzuk-Djado Basin
- 4. Taoudeni-Tanezrouft Basin
- 5. Senegalo-Mauritanian Basin
- 6. lullemeden-Irhazer Aquifer System
- 7. Chad Basin
- 8. Sudd Basin (Umm Ruwaba Aquifer)
- 9. Ogaden-Juba Basin
- 10. Congo Intracratonic Basin
- 2. Northwest Sahara Aquifer System (NWSAS) 12. Southeast Kalahari Basin 13. Karoo Basin 14. Northern Great Plains / Interior Plains Aquifer 24. Ganges-Brahmaputra Basin 15. Cambro-Ordovician Aquifer System 16. California Central Valley Aquifer System 17. High Plains-Ogallala Aquifer 18. Gulf Coastal Plains Aquifer System

11. Northern Kalahari Basin

- 19. Amazonas Basin
- 20. Maranhao Basin
- 21. Guarani Aquifer System 22. Arabian Aquifer System 23. Indus Basin

 - 25. West Siberian Artesian Basin
 - 26. Tunguss Basin
- 27. Angara-Lena Artesian Basin
- 28. Yakut Basin
- 29. North China Plain Aquifer System 30. Songliao Basin

31. Tarim Basin

32. Parisian Basin

35. Pechora Basin

37. Canning Basin

34. North Caucasus Basin

36. Great Artesian Basin

Groundwater resources

- in major groundwater basins 33. East European Aquifer System in areas with
 - complex hydrogeological structure in areas with local and shallow aquifers

© WHYMAP & Margat 2008

Groundwater Image: Construction of the second sec

Nuclear safety

Ocean

Glacier

China National Nuclear Corp ⁸¹Kr characterize old (isolated) groundwater environment for sites of nuclear waste repository Waste Isolation Pilot Plant (WIPP), New Mexico, USA China National Nuclear Corp., Beishan, China Central Res. Inst. of Electric Power Industry (CRIEPI), Japan

Beishan, China

With Laboratory for Sciences of Climate and Environment (LSCE) Arctic and Antarctic Research Institute (AARI)

Guliya Ice Cap

⁸¹Kr ages of 8 samples Ages < 15 - 74 ka

> Li-De Tian *et al.,* Geophys. Res. Lett. (2019)

First ³⁹Ar-dating of small ocean samples

Heidelberg University (Markus Oberthaler and Werner Aeschbach) GEOMAR Kiel (Toste Tanhua)

Ebser, S. et al., Nat. Commun. 9, 5046 (2018)

Sampling:

- Three depth profiles from the North Atlantic (Eastern tropical North Atlantic Oxygen Minimum Zone)
- 5 liters of water per data point
- Sampling with standard Niskin bottles

Main results:

- ³⁹Ar & CFC constrain transit time distributions
- Mean ages of up to 800 years
- Reveal ocean ventilation patterns
- Advection in intermediate depths much more important than previously assumed

PPT by Sven Ebser

Z.-T. Lu *et al.*, Earth-Sci. Rev.

Lamont-Doherty Earth Observatory Columbia University William Smethie Jr., Martin Stute *et al*.

- 900 Atlantic samples collected in the 80's
- ³⁹Ar dating by USTC and Heidelberg

"a more dense survey of ³⁹Ar with higher accuracy measurements would prove of great value in constraining ocean general circulation models." --- Broecker and Peng (2000)

Radiokrypton unveils dual moisture sources of a deep desert aquifer

Yokochi et al., PNAS 116, 16222 (2019)

Reika Yokochi U Chicago

- Investigated the paleo hydroclimate properties of
 the Nubian Sandstone Aquifer
 in the Negev Desert, Israel.
- Resolved subsurface mixing and identified two distinct moisture sources of recharge.
- Reveals that tectonically
 active terrain can store
 groundwater. 32

Groundwater source tracing using radiokrypton

High-pressure methane hydrate phase Injected fluid diffusion and induced seismicity Social genetic effects on adolescent smoking Yeast antiviral pathway and apoptosis

⁸¹Kr in the Atmosphere

- production rate and abundance

(A) Geomagnetic field
(B) Production rate
(C) ⁸¹Kr age correction

< 4%

-- C. Buizert *et.al.,* Proc. Natl. Acad Sci. **111**, 6876 (2014)

Fig. 3. Stability of atmospheric ⁸¹Kr. (*A*) Relative paleointensity of the geomagnetic field (56). Magnetic reversals are indicated by vertical lines. (*B*) Relative spallogenic production rate (orange) with relative ⁸¹Kr abundance (black). The ⁸¹Kr abundance is calculated through a convolution of the production rate with the atmospheric ⁸¹Kr residence [1/330 × exp(-*t*/330), with time *t* in ka]. (*C*) Estimated error in ⁸¹Kr radiometric age when assuming stable atmospheric ⁸¹Kr/Kr; positive values indicate an underestimated t_{Kr} .