
Quantum Monte Carlo and Nuclear Physics:
Steven C. Pieper

• Early days of Nuclear QMC
• Ground States
• EM form factors and transitions
• Excited States and Low Energy Scattering
• Neutron Matter and Drops
• Electron and Neutrino Scattering
• Outlook

AV18 celebration





• Nobel Prize Winner 
• Director of INT 
• Former Secretary of DOE 
• Professors from:  
    Cornell, Illinois, MIT, Minnesota,  
    Pisa, Stony Brook, …   

•  Several other past, current  
      leading scientists in NP  

Find in the picture



My First and last papers w/ Steve

Quantum Monte Carlo calculations of nuclei with A≦7 
BS Pudliner, VR Pandharipande, J Carlson, SC Pieper, RB Wiringa 
Physical Review C 56 (4), 1720, 1997. 

Quantum Monte Carlo calculation of neutral-current   
υ- 12C inclusive quasielastic scattering 
A Lovato, S Gandolfi, J Carlson, E Lusk,  
SC Pieper, R Schiavilla, Physical Review C 97 (2), 022502, 2018 



~26 Papers w/ S.C. Pieper

Nuclear Spectra with A≤7
Pion exchange and three-nucleon forces

A=8 nuclei
Benchmark of A=4

Excited states in A=6,8
RMP 2015. (QMC methods for Nuclear Physics)
Tensor Forces and the Ground State of Nuclei

Neutron-alpha scattering
Nucleon and Pair-momentum distributions

Neutron Drops and Skyrme density Functionals
Cold neutrons trapped in external fields

Charge Form Factor and Sum Rules in 12C
Neutral Weak currents in inclusive scattering from 12C

EM and neutral-weak response functions of 12C
Isovector spin-longitudinal and transverse response of nuclei

EM response of 12C
Neutron Matter: A superfluid Gas



I was Vijay’s Graduate Student at Urbana  
(VMC of A=3,4; quark models)

visited Bob at ANL to work with advanced computers
Mal gave QMC lectures at Urbana

…
Bob and Vijay recruited Steve to QMC work

I went to Courant (NYU) to work with Mal Kalos and Kevin Schmidt

Excellent combination of ingredients:

Good physics problem:   interacting nucleons to nuclei
Rapidly advancing tools:   from very primitive to very advanced computers

Excellent Collaborators:   Steve Pieper



• nuclear binding, Equation of State
• Superfluidity, Beta Decay, …

N

Z

Nuclear Chart

Nuclei are a strongly correlated many-body systems

•nucleosynthesis (r-process)
•beta decays
•electron and neutrino scattering
•neutron stars
•fundamental symmetries (EDM, beta decay, etc.)



Predictions with χEFT EM Currents for the Deuteron Magnetic f.f.
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Deuteron form factors

Nuclei and Nuclear Interactions
density distributions in states with specified isospin T , spin
S , and spin projection MS . Since the deuteron has only two
nucleons, its one- and two-body density distributions are
trivially related. Variational wave functions Cv and Monte
Carlo methods are used for A.2.
The two-nucleon distributions in the T ,S50,1 states have

a strong dependence on the spin projection MS . The
equidensity surfaces, spanning the top three-quarters of the
density range in MS50 states, have toroidal shape. These
tori are produced by the joint action of the repulsive core and
tensor interactions. In contrast the equidensity shapes in the
MS561 have dumbbell shapes, which have been studied
earlier in the deuteron @13,14#. A brief description of the
two-nucleon interaction in T ,S50,1 states is given in Sec. II,
and the density distribution of the deuteron is discussed in
detail in Sec. III, where we show that the dumbbell-shaped
distributions in MS561 states are produced by rotating tori.
Commonly used models of v i j predict that the maximum
density torus has a diameter of ;1 fm, and the half-
maximum density torus has a thickness of ;0.9 fm. In Sec.
III we relate these dimensions of the toroidal distribution to
the observed electromagnetic form factors of the deuteron.
The structures are rather dense; current models predict the
maximum one-body density of the torus inside the deuteron
to be ;0.3460.02 fm23, i.e., approximately twice nuclear
matter density.
The two-nucleon T ,S50,1, MS50,61 density distribu-

tions in 3,4He, 6,7Li, and 16O are compared with those of the
deuteron in Sec. IV. The distributions for r,2 fm differ only
by a single scale factor. They indicate that in the T50 state,

the tensor correlations have near maximal strength for r,2
fm in all these nuclei. The scale factor is identified as the
Levinger-Bethe quasideuteron number, and its value is com-
pared to the ratios of total photon (E

g

5 80 to 120 MeV! and
pion (E

p

1;115 MeV! absorption cross sections.
In order to study the nature of many-body structures in-

duced by these compact two-body structures we study the
dp , dd , and ad overlaps with the Cv of 3He, 4He, and
6Li in Sec. V. These depend strongly on the spin projection
Md of the deuteron and indicate the presence of anisotropic
structures in all these nuclei. Experiments to probe these
structures are suggested.
Pair distribution functions in other T ,S ,MS states are dis-

cussed in Sec. VI. Those in T ,S51,1, MS50,61 states are
anisotropic as expected from the pion-exchange tensor force.
We also find that the number of T ,S51,0 pairs in a nucleus
is reduced due to many-body effects involving the strong
T ,S50,1 tensor correlations. This reduction gives a signifi-
cant contribution to the saturation of nuclear binding ener-
gies.
The Skyrme field theory @15#, related to QCD in the limit

of large number of colors Nc!` , has predicted toroidal
shapes for the deuteron @16–18# in the classical limit. Den-
sity distributions of the ground states with 3–6 baryons have
also been calculated @19# in this limit. In Sec. VII, we sum-
marize our results, obtained with conventional nuclear many-
body theory, and indicate their relation to those of the
Skyrme field theory in the classical limit, and of the constitu-
ent quark model.

FIG. 1. The upper four lines show expectation values of v0,1
stat for MS50, u50, and the lower four lines are for MS50, u5p/2 or

equivalently MS561, u50. The expectation values for MS561, u5p/2 ~not shown! are half-way in between.

54 647FEMTOMETER TOROIDAL STRUCTURES IN NUCLEI

S=0 T=1 channel

S=1 T=0 channel



Strongly Correlated Quantum Many-Body Physics

cautions:
The Schrodinger equation cannot be solved accurately when  the number of 
particles exceeds about 10. No computer existing,  or that will ever exist, can 
break this barrier because it is a  catastrophe of dimension ... 
Pines and Laughlin (2000) 

In general the many electron wave function Ψ  ... for a system of N electrons is 
not a legitimate  scientific concept [for large N] 
Kohn (Nobel lecture, 1998) 

                                  

Must solve the quantum many-body problem: structure & dynamics

 but often we do not need a complete description of the system:
thermal properties, samples of path integral, cluster expansions,…

Quantum Monte Carlo, Coupled Cluster and other many-body methods



Abudance of the Elements in the Galaxy

Z Element Mass fraction (ppk)

1 Hydrogen 739

2 Helium 240

8 Oxygen 10

6 Carbon 5

Total 99.4%

https://en.wikipedia.org/wiki/Atomic_Number
https://en.wikipedia.org/wiki/Hydrogen
https://en.wikipedia.org/wiki/Helium
https://en.wikipedia.org/wiki/Oxygen
https://en.wikipedia.org/wiki/Carbon
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computer science department in 1969, offered me a faculty 
position and I’ve been here ever since.”

At the time, “there were not many departments offering computer 
science degrees – Courant wasn’t, Columbia wasn’t,” he said. 
“Most of the faculty at that time had either science or math 
degrees.” Michael Overton, now chair of the Institute’s computer 
science department, was the first person hired with a Ph.D. in 
computer science, in 1979. 

In the 1970s, the department was quite small, but in the 1980s, it 
grew considerably, establishing much-needed lab space on three 
renovated floors of 715-719 Broadway. These included robotics 
and parallel computing labs, both initiated by Jack Schwartz.

According to Overton, “Jack was absolutely instrumental in the 
growth of computer science at Courant in those critical years, the 
‘70s and ‘80s. He had a huge impact on setting the research agenda 
here and establishing what areas were important, what areas to 
hire in,” he said. “He was also remarkable for his breadth; the fact 
that he made significant contributions in many areas of computer 
science and mathematics – that was really very unusual.”

Sylvain Cappell echoed this assessment of Schwartz. “Jack had 
analytic powers that were really breathtaking. He could take up 
a field and master it to the front lines and teach it in a matter of 
weeks. He did that many times.”

Another key player in computer science at Courant was Martin 
Davis, a logician who became famous for his work on Hilbert’s 10th 
problem, one of the celebrated problems Hilbert posed in 1900. 

Over the last three decades, Courant’s computer science 
department has experienced substantial growth, greatly expanding 
its significance and visibility. “We’ve hired a lot of very good 
people in the last ten years and now have a number of areas of 
strength that weren’t there before,” Overton explained, “such as 
machine learning, graphics and multimedia, algorithms and theory, 
cryptography, and verification.”

Many Paths to Courant

The unique circumstances that led each of these twelve professors 
to the Courant Institute vary greatly, but the common thread has 
been the certainty that this was the best, most exciting place to be. 

Raghu Varadhan arrived in 1963 from Calcutta, India. “I was 
interested in what was going on here,” he explained. “I’d 
developed some interests while working in India and I was told 
this was the best place to pursue them. In those days it was easy; 

there was plenty of money available for visitors. I thought I would 
come for a year, and I never left! I enjoyed being here and I liked 
my colleagues and never saw the point of moving elsewhere so I 
just stayed on. And I like New York City; I like big cities.”

Cathleen Morawetz sought out Courant due to the urging of her 
father. “My father, John L. Synge, was an applied mathematician 
and he had met Courant. They had exchanged thoughts about 
the fact that their daughters had married and that this was going 
to mess up their careers. My mother was actually the one who 
encouraged me to have a career.” 

Sylvain Cappell immigrated to the United States from Belgium 
with his family in 1950. “In 1963 when I was in high school,” 
he said, “I was the top national winner of what was then called 
the Westinghouse National Science Talent Search; now it’s called 
the Intel National Science Talent Search. I began my career as a 
mathematical researcher, worked at several places, and eventually 
came to Courant in 1974.”

Leslie Greengard, current Director of the Courant Institute, joined 
the faculty in 1989 and like so many others, has been there ever 
since. “This was the place I wanted to come to,” he said. “I’m very 
social and I loved the atmosphere here. I couldn’t see myself being 
anywhere else, and I still feel that way.”

“It was the great people at Courant that brought me here to begin 
with,” said Marsha Berger. “Peter Lax, for example. In the field that 
I’m in, he’s the shining light. I first came as a post doc in 1982 and 
ended up staying, so I’ve spent my whole professional career at 
Courant.”

Jeff Cheeger came from Stony Brook in 1989, becoming the 
Institute’s first professor in the field of differential geometry. “For 
a long time prior to when I came, this was a field where the 
Institute wanted to establish some sort of presence. On the pure 
side of mathematics, traditionally Courant had been relatively 
narrowly focused with a massive presence in nonlinear PDE 
(partial differential equations) and probability, with more limited 
coverage of other areas. It was unique for the level of its applied 
mathematics and for having absolutely top people who did both.”

Andy Majda’s story involves oceans, Princeton, and NYU’s current 
Provost. “I was a professor at Princeton when Dave McLaughlin, who 
was my Princeton colleague and is now NYU’s Provost, got an offer 
to become the Director of Courant. I wanted him to stay at Princeton 
because I had worked hard to hire him – I can say I hired NYU’s 
Provost – when I was running the Applied Math program there. He 
said to me, ‘I’m going to NYU to become Courant’s Director and I’d 
like to see what I can do to attract you.’” 

1980s:
The Ultracomputer

Design Underway:  
Mal Kalos, Allan Gottlieb, 
and Jack Schwartz

Allan Gottlieb points to  
the Switching board of  
the Ultracomputer 3. 
These custom VLSI switches 
designed at NYU were  
the first to “combine”
memory requests, an 
Ultracomputer innovation.

Photo: Dan Creighton

Courant Institute

my time as a PD at Courant, with the 
group of Mal, Paula Whitlock, Jules Moskowitz, w/ 
frequent visitor Geoffrey Chester around this time 

 
Kevin Schmidt returned to NYU as a chemistry professor

• work on Liquid Helium, nuclear VMC calculations, low-energy nuclear scattering



Over the years,  much bigger and faster computers
and the software to use them effectively
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GFMC Calculations

FIG. 3 GFMC energies of light nuclear ground and excited states for the AV18 and AV18+IL7 Hamiltonians compared to
experiment. See Table I for references.

TABLE I AV18+IL7 GFMC results for A  12 nuclear ground states (Brida et al., 2011; Lovato et al., 2013; McCutchan et al.,
2012; Pastore et al., 2013, 2014; Pieper and Carlson, 2015; Wiringa et al., 2013), compared to experimental values (Amroun
et al., 1994; NNDC, 2014; Nörtershäuser and et al., 2009; Nörtershäuser et al., 2011; Purcell et al., 2010; Shiner et al., 1994;
Tilley et al., 2002, 2004). Numbers in parentheses are statistical errors for the GFMC calculations or experimental errors;
errors of less than one in the last decimal place are not shown.

AZ(J⇡;T ) E (MeV) r
p

[r
n

] (fm) µ (µ
N

) Q (fm2)
GFMC Expt. GFMC Expt. GFMC Expt. GFMC Expt.

2H(1+; 0) �2.225 �2.2246 1.98 1.96 0.8604 0.8574 0.270 0.286
3H( 1

2

+

; 1

2

) �8.47(1) �8.482 1.59 [1.73] 1.58 2.960(1) 2.979
3He( 1

2

+

; 1

2

) �7.72(1) �7.718 1.76 [1.60] 1.76 �2.100(1) �2.127
4He(0+; 0) �28.42(3) �28.30 1.43 1.462(6)
6He(0+; 1) �29.23(2) �29.27 1.95(3) [2.88] 1.93(1)
6Li(1+; 0) �31.93(3) �31.99 2.39 2.45(4) 0.835(1) 0.822 0.1(2) �0.082(2)
7He( 3

2

�
; 3

2

) �28.74(3) �28.86 1.97 [3.32(1)]
7Li( 3

2

�
; 1

2

) �39.15(3) �39.25 2.25 [2.44] 2.31(5) 3.24(1) 3.256 �3.9(2) �4.06(8)
7Be( 3

2

�
; 1

2

) �37.54(3) �37.60 2.51 [2.32] 2.51(2) �1.42(1) �1.398(15) �6.6(2)
8He(0+; 2) �31.42(3) �31.40 1.83(2) [2.73] 1.88(2)
8Li(2+; 1) �41.14(6) �41.28 2.10 [2.46] 2.20(5) 1.48(2) 1.654 2.5(2) 3.27(6)
8Be(0+; 0) �56.5(1) �56.50 2.40(1)
8B(2+, 1) �37.51(6) �37.74 2.48 [2.10] 1.11(2) 1.036 5.9(4) 6.83(21)
8C(0+; 2) �24.53(3) �24.81 2.94 [1.85]
9Li( 3

2

�
, 3

2

) �45.42(4) �45.34 1.96 [2.33] 2.11(5) 3.39(4) 3.439 �2.3(1) �2.74(10)
9Be( 3

2

�
, 1

2

) �57.9(2) �58.16 2.31 [2.46] 2.38(1) �1.29(1) �1.178 5.1(1) 5.29(4)
9C( 3

2

�
, 3

2

) �38.88(4) �39.04 2.44 [1.99] �1.35(4) �1.391 �4.1(4)
10Be(0+; 1) �64.4(2) �64.98 2.20 [2.44] 2.22(2)
10B(3+; 0) �64.7(3) �64.75 2.28 2.31(1) 1.76(1) 1.801 7.3(3) 8.47(6)
10C(0+; 1) �60.2(2) �60.32 2.51 [2.25]
12C(0+; 0) �93.3(4) �92.16 2.32 2.33

One ‘Solution’ to problem of dimension: 
solve up to A~12

Pieper, Wiringa, Carlson, Schiavilla, … Carlson, et al, RMP 2015



Low Energy Scattering

interactions between the clusters the relative wave function
will contain Coulomb rather than Bessel functions.
The original QMC scattering calculations required the wave

function to be zero at a specified cluster separation (Carlson,
Schmidt, and Kalos, 1987), while in recent work the loga-
rithmic derivative γ of the relative wave function at a boundary
r ¼ R0 is specified (Nollett et al., 2007):

γ ¼ ∇rΨ
Ψ

!!!!
r¼R0

: ð76Þ

In VMC calculations this is enforced within the form of the
trial wave function, which is required at large distances to go
similar to Eq. (75). The radius R0 should be large enough so
that there is no strong interaction between the clusters at that
separation. The scattering energy and hence the relative
momentum between clusters is unknown initially, but these
are obtained by variationally solving for states confined within
the boundary r ¼ R0. Knowledge of the energy and the
boundary condition is then sufficient to determine the phase
shift at that energy. The method for GFMC is very similar,
except that the logarithmic derivative of the wave function
must also be enforced in the propagator. This can be
incorporated through an image method. For each point R
near the boundary r ¼ R0 reached during the random walk,
the contribution to the internal wave function from points
originally outside the boundary are added. Consider an image
at a cluster separation re ¼ rðR0=rÞ2; simple manipulations
yields

Ψnþ1ðR0Þ¼
Z

jrj<R0

dRc1dRc2drGðR0;RÞ

×
"
ΨnðRÞþ γ

GðR0;ReÞ
GðR0;RÞ

#
re
r

$
3

ΨnðReÞ
%
; ð77Þ

where R and R0 are the initial and final points of all particles,
Rc1 and Rc2 are the internal coordinates of the clusters, and r
is the separation between clusters. The image point for all the
particles is denoted byRe, and re is its cluster separation. The
image contribution ensures the correct logarithmic derivative
of the wave function at the boundary is preserved in the
propagation.
The n − α system is interesting as it is the lightest system

where T ¼ 3=2 triplets play a significant role. QMC methods
have been used to study low-energy scattering in n − α,
including the two low-lying P-wave resonances and S-wave
scattering (Nollett et al., 2007). The spin-orbit splitting is
especially interesting, as it can be examined by comparing the
3P1=2 and 3P3=2 partial waves.
The results of calculations with the AV18 NN interaction

and with different 3N interactions are shown in Fig. 14. The
various calculations are also compared with an R-matrix
analysis of the experimental data. As is evident from the
figure, the AV18 interaction alone significantly underpredicts
the spin-orbit splitting. The two-pion exchange in the UIX 3N
interaction increases the splitting, but not enough to agree with
the experimental data. The IL2 model of the 3N interaction
results in good agreement with the experimental spin-orbit
splitting.

These scattering methods have many possible applications.
They can be extended to inelastic multichannel processes in a
fairly straightforward manner. In this case there are multiple
independent solutions for a given scattering energy; hence one
must study the energy as a function of the boundary conditions
in each channel and obtain multiple independent solutions for
the same energy. From the boundary conditions, the energy,
and the relative asymptotic magnitude of the wave functions,
one can obtain the full multichannel S matrix. It should be
possible to treat a variety of low-energy strong reactions, as
well as electroweak transitions involving scattering states
using these methods. In addition, hadronic parity violation
in few-nucleon systems is an important application.

G. Chiral interactions

Local NN potentials derived within chiral effective field
theory have been used to calculate properties of A ¼ 3; 4
nuclei with GFMC by Lynn et al. (2014). Although the
calculations do not yet include 3N interactions that also
appear at N2LO, they are nevertheless interesting, showing
the order-by-order results for the binding energies and also the
range of results for different cutoffs. Also the question of
perturbative treatments of higher-order corrections has been
investigated, as well as one- and two-nucleon distributions.
Figure 15 shows results at various orders and for different

values of the cutoff R0 used to regulate the small-r behavior of
the pion-exchange potentials flong ¼ 1 − exp½−ðr=R0Þ4&. The
LO result is extremely overbound, whereas the NLO and
N2LO results are underbound as expected because of the
lack of the 3N interaction. The NLO interaction includes
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FIG. 14 (color online). Phase shifts for n − α scattering. Solid
symbols (with statistical errors smaller than the symbols) are
GFMC results, dashed curves are polynomial fits, and solid
curves are from an R-matrix fit to data. From Nollett et al., 2007.
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Neutron-alpha scattering
Nollett, et al., 2007

make a given Jπ;T. These are pseudobound wave functions
that fall off exponentially at long range, with matter radii not
much larger than the ground state. Then independent GFMC
propagations are carried out starting from each of these trial
functions. An example is shown in Fig. 2 for the four 5

2
−

p-shell states in 7Li, all of which are particle unstable (Pieper,
Wiringa, and Carlson, 2004). The GFMC propagations stay
nearly orthogonal to fairly large τ ∼ 1 MeV−1, as shown by
the solid symbols. The overlaps between different states can
be evaluated, and an explicit reorthogonalization made, shown
by the open symbols. The states remain well separated in
energy.
The first 5

2
− state in Fig. 2 is physically wide (∼900 keV)

because it has the spatial symmetry of alpha plus triton and is
several MeV above the threshold for breakup into separated
clusters. Consequently, a GFMC propagation is expected to
eventually drop to that threshold energy, and the figure
shows, after a rapid initial drop from −26 to −32 MeV by
τ ¼ 0.1 MeV−1, a slowly decreasing energy as τ increases,
reaching −33 MeV at τ ¼ 1 MeV−1. In cases like this, the
energy is quoted at the small value of τ, where the rapid initial
improvement over the variational starting point has saturated.
The second 5

2
− state in Fig. 2 is physically narrow (∼80 keV)

because it has a spatial symmetry like 6Liþ n and is only
20 keVabove that breakup threshold. The GFMC propagation
shows the same rapid initial drop in energy, and then no
appreciable further decline, allowing us to identify a clear
energy for this state. The third and fourth 5

2
− states are not

experimentally identified, but from the GFMC propagation
behavior we would expect the third state to be physically
narrow, and the fourth to be fairly broad. An alternative
approach to calculate systems in the continuum by imposing
specific boundary conditions is presented in Sec. IV.F.
In general the GFMC method suffers from the fermion sign

problem in that the numerator and denominator of Eq. (45)
tend to have an increasing ratio of error to signal for a finite
sample size and large imaginary times τ. Other than for a few
special cases such as purely attractive interactions, Hubbard
models at half filling, or lattice QCD at zero chemical

potential, QMC methods typically all have this difficulty.
This is basically because when ΨT is not exact it contains
contamination from the bosonic ground state that will be
unavoidably sampled. For scalar potentials, or in any case
where a real wave function can be used, the sign problem is
avoided by using the fixed-node approximation, and the
problem is solved in a restricted (bosonic) subspace, where
the trial wave function always maintains the same sign. In this
case the problem would be exactly solved if the nodes of the
true ground state were known. Because this is not the case, the
solution obtained is a rigorous upper bound to the true ground-
state energy (Moskowitz et al., 1982). For spin-isospin
dependent Hamiltonians a complex wave function must be
used, and the general fixed-node approximation does not
apply. Instead the sign problem is circumvented by using a
“constrained-path” algorithm, essentially limiting the original
propagation to regions where the propagated and trial wave
functions have a positive overlap. This approximation, like
the fixed-node algorithm for spin-independent interaction,
involves discarding configurations that have zero overlap with
the trial wave function. As such, they are exact for the case
when the trial wave function is exact and are therefore
variational. However, unlike the fixed-node case, the con-
strained-path method does not provide upper bounds (Wiringa
et al., 2000).
To address the possible bias introduced by the constraint, all

the configurations (including those that would be discarded)
for a previous number of steps Nuc are used when evaluating
energies and other expectation values. Nuc is chosen to be as
large a number of time steps as feasible with reasonable
statistical error (again typically 20 to 40 steps). Tests using
different trial functions and very long runs indicate that
energies in p-shell nuclei are accurate to around 1% using
these methods. This has been tested in detail by Wiringa et al.
(2000), where the use of different wave functions is discussed.
Expectation values other than the energy are typically

calculated from “mixed” estimates; for diagonal matrix
elements this is

hOðτÞi ≈ 2
hΨT jOjΨðτÞi
hΨT jΨðτÞi

−
hΨT jOjΨTi
hΨT jΨTi

: ð46Þ

Equation (46) can be verified by assuming that the true ground
state is well represented by the variational wave function and a
small perturbation, i.e., jΨðτÞi ≈ jΨTiþ λjΨi, and λ is a small
parameter. Since the variational wave functions are typically
very good, the extrapolation is quite small. This can be further
tested by using different trial wave functions to extract the
same observable, or using the Hellman-Feynman theorem. For
the case of simple static operators, improved methods are
available that propagate both before and after the insertion of
the operator O (Liu, Kalos, and Chester, 1974), i.e., directly
calculating operators with ΨðτÞ on both sides. However, these
techniques might be difficult to apply for nonlocal operators.
Because a Hamiltonian commutes with itself, the total

energy of the Hamiltonian used to construct the propagator
[Eq. (42)] is not extrapolated; thus this total energy is not the
sum of its extrapolated pieces, rather the sum differs by the
amount the ΨT energy was improved. As noted, the full AV18
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Electroweak Observables: Transitions

The calculated impulse E0 transition form factor is com-
pared to the experimental data in Fig. 21. The inset is scaled
such that (linear) extrapolation to k2 ¼ 0 gives the BðE0Þ. The
GFMC more than doubles the VMC result and gives excellent
agreement with the data.

E. Magnetic moments and electroweak transitions

In the IA, magnetic moments are calculated as

μIA ¼
X

i

ðeN;iLi þ μN;iσiÞ; ð124Þ

where eN;i ¼ð1þ τi;zÞ=2, μN ¼ eN þ κN , κN ¼ðκSþ κVτi;zÞ=2,
and κS ¼ −0.120 and κV ¼ 3.706 are the isoscalar and
isovector combinations of the anomalous magnetic moment
of the proton and neutron. The magnetic moment corrections
associated with the two-body operators discussed previously
are obtained from diagonal nuclear matrix elements

μMEC ¼ −ilim
q→0

2m
q

hJπ;MJ;TjjMEC
y ðqx̂ÞjJπ;MJ;Ti; ð125Þ

where the nuclear wave function is taken with M ¼ J, the
momentum transfer q is taken along x̂, m is the nucleon mass,
and the extrapolation to determine μ is done from calculations
performed at several small values of q.
The total magnetic moments, including MEC derived

within χEFT, are presented in Table I. Results obtained using
MEC derived in the conventional approach and within χEFT
are similar and have been discussed in detail by Pastore et al.
(2013). Here it is interesting to discuss the role of MEC
compared to the IA. GFMC calculations using AV18þ IL7
and chiral two-body currents of the magnetic moments are
shown in Fig. 22. The experimental magnetic moments of
A ¼ 2; 3 nuclei were used to constrain the LECs of the χEFT;
all results for heavier nuclei are predictions.
In many cases the two-body currents significantly change

the IA results and in all of these much better agreement with
experiment is achieved. The contribution of MEC is generally
larger for even-odd and odd-even nuclei, in particular, for 9Li
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and 9C. The exceptions are 9Be and 9B, which with their [441]
spatial symmetry are essentially single nucleons outside a
8Beð0þÞ core; on average, these have no OPE interaction with
the core and therefore no significant MEC contribution. For
odd-odd isoscalar nuclei, the IA results are already in good
agreement with experimental data; only for the T ¼ 1 nuclei
8Li and 8B are the MEC contributions significant.
M1 and E2 electromagnetic transitions for A ¼ 6–9 nuclei

have been calculated with GFMC. The one-body parts of these
operators are given by

M1 ¼ μN
X

i

ðLi þ gpSiÞð1þ τi;zÞ=2þ gnSið1 − τi;zÞ=2;

E2 ¼ e
X

i

½r2i Y2ðr̂iÞ&ð1þ τi;zÞ; ð126Þ

where Y is a spherical harmonic, L and S are the orbital and
spin angular momentum operators, and gp and gn are the
gyromagnetic ratio of protons and neutrons. MEC are also
included in the M1 transitions. The nuclear matrix elements
can be compared with the experimental widths. In units of
MeV, they are given by (Preston, 1962)

ΓM1 ¼
16π
9

!
ΔE
ℏc

"
3

BðM1Þ;

ΓE2 ¼
4π
75

!
ΔE
ℏc

"
5

BðE2Þ; ð127Þ

where ΔE is the energy difference between the final and initial
states and BðM1Þ ¼ hJFjjM1jjJIi2=ð2JI þ 1Þ is in units of μ2N
and BðE2Þ ¼ hJFjjE2jjJIi2=ð2JI þ 1Þ is in units of e2 fm4.
A number of calculated electromagnetic transition strengths

are compared with experiment in Fig. 23. Many additional
transitions within 8Be are reported in Pastore et al. (2014).
Again GFMC calculations were made using AV18þ IL7 and
chiral two-body currents. The two-body currents make large
corrections to the IA results for theM1 transitions; these often
result in excellent agreement with experiment.
Weak decays of A ¼ 6, 7 nuclei have been evaluated using

QMC but much more needs to be done in the future. In IA, the
weak Fermi (F) and Gamow-Teller (GT) operators to be
evaluated are

F ¼
X

i

τi';

GT ¼
X

i

σiτi': ð128Þ

A first calculation for the weak decays 6Heðβ−Þ6Li and
7BeðεÞ7Li was made by Schiavilla and Wiringa (2002) using
VMC wave functions for the AV18þ UIX Hamiltonian and
incorporating conventional MEC as discussed in Sec. V.A.2.
Parameters in the MEC were fixed to reproduce 3H β decay
(Schiavilla et al., 1998).
The 6He β decay is a pure GT transition, while the 7Be

electron capture is a mixed Fþ GT transition to the ground
state, and a GT transition to the first excited state of 7Li. These
are superallowed decays where the dominant spatial symmetry
of the parent and daughter states is the same, e.g., ½42& → ½42&

in A ¼ 6 and ½43& → ½43& in A ¼ 7. In these cases, the F and
GT matrix elements are of the order of 1–2 and the MEC
contributions are only a 2%–4% correction.
Subsequently, a GFMC calculation for these transitions was

made by Pervin, Pieper, and Wiringa (2007) based on the
AV18þ IL2 Hamiltonian, but only in the IA. The GFMC
results for these three Bð GTÞ reduced transition probabilities
are shown at the bottom of Fig. 23. These are already in fairly
good agreement with experiment, and small MEC corrections
will not shift the results by much.
Weak decays in the A ¼ 8; 9 nuclei pose a much bigger

challenge. For example, 8Heðβ−Þ8Li goes from a predomi-
nantly [422] symmetry state to multiple 1þ excited states, but
primarily to the first excited state in 8Li. The latter is
predominantly a [431] symmetry state with only a small
[422] component, so the allowed GT matrix element is of the
order of 0.1–0.2. Similarly, the 8Liðβ−Þ8Be and 8BðβþÞ8Be
decays are transitions from large to small components, with
the added complication that the final 2þ state in 8Be is a
moderately broad resonant state. GFMC calculations in
impulse approximation underpredict the A ¼ 8 experimental
matrix elements by a factor of 2 (Pastore, 2014). It is possible
that GFMC does an inadequate job of accurately determining
small components in the final state wave functions, or that
the specific Hamiltonian does not induce the required
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(Pervin, Pieper, and Wiringa, 2007) in A ≤ 9 nuclei. Symbols are
as in Fig. 22.
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Nuclear Properties: A=12 Ground and Hoyle States

In QMC, matrix elements are evaluated as described in
Sec. III.B.2. The results of elastic and inelastic electromag-
netic form factors for 6Li are shown in Fig. 17. The
calculations were performed within the IA and two-body
operators added (IAþMEC). Overall, the agreement with
the experimental data is excellent. The contribution of MEC
is generally small but its inclusion improves the agreement
between theory and data. In particular, it shifts the longi-
tudinal elastic and inelastic form factors to slightly lower
values and sensibly increases the transverse inelastic form
factor.
The longitudinal form factor of 12C is shown in Fig. 18. The

calculation has been performed including only one-body
operators (empty symbols), and one- plus two-body operators
(Lovato et al., 2013). The experimental data are from a
compilation by Sick (1982, 2013) and are well reproduced by
theory over the entire range of momentum transfers. The two-
body contributions are negligible at low q and become
appreciable only for q > 3 fm−1, where they interfere destruc-
tively with the one-body contributions, bringing theory into
closer agreement with experiment.

D. Second 0þ state of 12C: Hoyle state

The second 0þ state of 12C is the famous Hoyle state, the
gateway for the triple-alpha burning reaction in stars. It is a
particularly difficult state for shell-model calculations as it is
predominantly a four-particle four-hole state. However, the
flexible nature of the variational trial functions allows us to
directly describe this aspect of the state.
To do this (Pieper and Carlson, 2015) two different types of

single-particle wave functions have been used in the jΦNi of
Eq. (30): (1) the five conventional 0þ LS-coupled shell-model
states and (2) states that have an explicit three-alpha structure.
The first alpha is in the 0s shell, the second in the 0p shell, and
the third in either the 0p or 1s0d shell. The latter can have four
nucleons in 1s or four in 0d or two in 1s and two in 0d. In
addition, we allow the third alpha to have two nucleons in 0p
and two in 1s0d (a two-particle two-hole excitation). This
gives us a total of 11 components in jΦNi; a diagonalization
gives the ΨT for the ground and excited 0þ states.
The resulting ground state has less than 1% of its ΨT in the

1s0d shell while the second state has almost 70% in the 1s0d
shell. The GFMC propagation is then done for the first two
states; the resulting energies are shown as a function of
imaginary time τ in Fig. 19 which has results for two different
initial sets of ΨT . The GFMC rapidly improves the variational
energy and then produces stable (except for Monte Carlo
fluctuations) results to large τ. The resulting ground-state
energy is very good, −93.3ð4Þ MeV versus the experimental
value of −92.16 MeV. However, the Hoyle state excitation
energy is somewhat too high, 10.4(5) versus 7.65 MeV.
Figure 20 shows the resulting VMC and GFMC densities

for one of the sets of ΨT . The GFMC propagation builds a dip
at r ¼ 0 into the ground-state density which results in good
agreement with the experimental value. However, the Hoyle
state density is peaked at r ¼ 0 in both the VMC and GFMC
calculations. A possible interpretation of these results is that
the ground state is dominated by an approximately equilateral
distribution of alphas while the Hoyle state has an approx-
imately linear distribution.
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12C charge form factor    
Lovato, et al., 2013

The calculated impulse E0 transition form factor is com-
pared to the experimental data in Fig. 21. The inset is scaled
such that (linear) extrapolation to k2 ¼ 0 gives the BðE0Þ. The
GFMC more than doubles the VMC result and gives excellent
agreement with the data.

E. Magnetic moments and electroweak transitions

In the IA, magnetic moments are calculated as

μIA ¼
X

i

ðeN;iLi þ μN;iσiÞ; ð124Þ

where eN;i ¼ð1þ τi;zÞ=2, μN ¼ eN þ κN , κN ¼ðκSþ κVτi;zÞ=2,
and κS ¼ −0.120 and κV ¼ 3.706 are the isoscalar and
isovector combinations of the anomalous magnetic moment
of the proton and neutron. The magnetic moment corrections
associated with the two-body operators discussed previously
are obtained from diagonal nuclear matrix elements

μMEC ¼ −ilim
q→0

2m
q

hJπ;MJ;TjjMEC
y ðqx̂ÞjJπ;MJ;Ti; ð125Þ

where the nuclear wave function is taken with M ¼ J, the
momentum transfer q is taken along x̂, m is the nucleon mass,
and the extrapolation to determine μ is done from calculations
performed at several small values of q.
The total magnetic moments, including MEC derived

within χEFT, are presented in Table I. Results obtained using
MEC derived in the conventional approach and within χEFT
are similar and have been discussed in detail by Pastore et al.
(2013). Here it is interesting to discuss the role of MEC
compared to the IA. GFMC calculations using AV18þ IL7
and chiral two-body currents of the magnetic moments are
shown in Fig. 22. The experimental magnetic moments of
A ¼ 2; 3 nuclei were used to constrain the LECs of the χEFT;
all results for heavier nuclei are predictions.
In many cases the two-body currents significantly change

the IA results and in all of these much better agreement with
experiment is achieved. The contribution of MEC is generally
larger for even-odd and odd-even nuclei, in particular, for 9Li
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The calculated impulse E0 transition form factor is com-
pared to the experimental data in Fig. 21. The inset is scaled
such that (linear) extrapolation to k2 ¼ 0 gives the BðE0Þ. The
GFMC more than doubles the VMC result and gives excellent
agreement with the data.

E. Magnetic moments and electroweak transitions

In the IA, magnetic moments are calculated as

μIA ¼
X

i

ðeN;iLi þ μN;iσiÞ; ð124Þ

where eN;i ¼ð1þ τi;zÞ=2, μN ¼ eN þ κN , κN ¼ðκSþ κVτi;zÞ=2,
and κS ¼ −0.120 and κV ¼ 3.706 are the isoscalar and
isovector combinations of the anomalous magnetic moment
of the proton and neutron. The magnetic moment corrections
associated with the two-body operators discussed previously
are obtained from diagonal nuclear matrix elements

μMEC ¼ −ilim
q→0

2m
q

hJπ;MJ;TjjMEC
y ðqx̂ÞjJπ;MJ;Ti; ð125Þ

where the nuclear wave function is taken with M ¼ J, the
momentum transfer q is taken along x̂, m is the nucleon mass,
and the extrapolation to determine μ is done from calculations
performed at several small values of q.
The total magnetic moments, including MEC derived

within χEFT, are presented in Table I. Results obtained using
MEC derived in the conventional approach and within χEFT
are similar and have been discussed in detail by Pastore et al.
(2013). Here it is interesting to discuss the role of MEC
compared to the IA. GFMC calculations using AV18þ IL7
and chiral two-body currents of the magnetic moments are
shown in Fig. 22. The experimental magnetic moments of
A ¼ 2; 3 nuclei were used to constrain the LECs of the χEFT;
all results for heavier nuclei are predictions.
In many cases the two-body currents significantly change

the IA results and in all of these much better agreement with
experiment is achieved. The contribution of MEC is generally
larger for even-odd and odd-even nuclei, in particular, for 9Li
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Auxiliary Field QMC:   Monte Carlo also for spins/isospins

Applications to larger nuclei: 16O,… to neutron matter and stars
hyperons in neutron star matter



Neutron Drops and Inhomogeneous Neutron Matter
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difference between the full y
18

and y0
8

is treated as a first-
order perturbation, whose contribution to the calculated
energies is ,0.2 MeV.
The calculated transient energies,
Estd ≠ kCV jHe2sH2E

0

dt jCV lykCV je2sH2E
0

dtjCV l ,

(4)
are shown in Fig. 1. The Est ! `d converges to the
lowest eigenvalue of the chosen Jp . In Fermi systems,
the statistical error in Estd increases with t as configu-
rations diffuse across nodal surfaces of the wave
function [8] limiting our studies to t , 0.04 MeV21.
The average values of Estd for t ≠ 0.032, 0.036,
and 0.04 MeV21, denoted by ¯E, are shown by hor-
izontal lines in Fig. 1. The Estd of the 8ns01d and
7ns1y2

2d states do not have much t dependence for
t . 0.015 MeV21, suggesting that their ¯E can be iden-
tified with the eigenvalues. In contrast, the Estd of the
7ns3y2

2d) state has more t dependence. Consequently,
the eigenvalue of the lowest 7ns3y2

2d state could be
a little below its ¯E value. However, we will neglect
that difference and regard it as our best estimate of the
eigenvalue. The GFMC estimate of the density distribu-
tion of neutrons in the 8ns01d drop is shown in Fig. 2.
These results can be used to test the accuracy of the
CVMC method and to further constrain the Skyrme-type
energy-density functionals used to study neutron-rich
nuclei and neutron-star crusts as discussed below.
The CVMC method and its modification for SOS are

described in Refs. [5,6]. The present CVMC calcula-
tions are more accurate; they include contributions of
all correlations and interactions up to five-body clusters.
In contrast, in [5,6] contributions of only static corre-
lations and interactions were calculated up to four-body
clusters and the momentum-dependent terms were eval-
uated only at the two-body level. With the simpler CV
given by Eq. (1), the one- to five-body cluster contri-
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Its value of 233.7s1d MeV is very close to the CVMC re-
sult retaining up to five-body clusters. Even in this rather
low-density system, the cluster expansion has a slow
convergence, and it appears necessary to include five-
body cluster contributions to reduce the truncation error
to ,2%.
The simple CV [Eq. (1)] is not very accurate; the

energy obtained with it is ,4 MeV (or ,11%) too large.
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where the three-body correlations, Uijk , are of the kind
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2d states. They are only ,4% above the GFMC
energies 237.6s3d, 232.3s2d, and 231.2s2d MeV. The
CVMC calculations require about a factor of 25 less com-
puter time than the GFMC, even allowing for the vari-
ational search, and it is possible to reduce the statistical
error to a fraction of 1%. Much of the improvement in
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difference between the full y
18

and y0
8

is treated as a first-
order perturbation, whose contribution to the calculated
energies is ,0.2 MeV.
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Estd ≠ kCV jHe2sH2E

0

dt jCV lykCV je2sH2E
0

dtjCV l ,

(4)
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masses [1], and because several present-day Skyrme
models have used this EOS to constrain the properties of
homogeneous neutron matter. Further studies with differ-
ent interaction models will be valuable, in particular, to
look at the spin-orbit interactions which might be increased
with a three-pion exchange TNI as in Illinois-7 [18].

Calculations are performed using Green’s function
Monte Carlo (GFMC) [19] and auxiliary field diffusion
Monte Carlo (AFDMC) [20] quantumMonte Carlo (QMC)
methods. These algorithms evolve an initial trial state,!T ,
in imaginary time to yield the ground state. The GFMC
method sums explicitly over spin and isospin states, and
can use very sophisticated !T [16]. However, it is limited
to small systems, up to 16 neutrons. In addition to sampling
the spatial integrals as in GFMC, AFDMC also samples the
spin and isospin degrees of freedom, and hence it can treat
larger systems [3]. Both methods use a constraint involving
the overlap with!T to eliminate the fermion sign problem,
and hence are approximate. Studies of light nuclei and
neutron matter show they give results within 1% of the
exact ground-state energy.

We use external fields yielding low or moderate
densities. However, even at small densities neutrons are
strongly interacting and pairing can be important. Recent
microscopic calculations of neutron matter give s-wave
pairing gaps of several MeV [4,21]. One- and two-nucleon
properties including pairing gaps and spin-orbit splittings
can be more sensitive to models of the three-nucleon
interaction. Calculations of very small neutron drops
(N ¼ 6; 7; 8) have been performed previously [22–24].
Even these calculations indicated a substantial difference
with traditional Skyrme models, which overbind the drops
and give too-large spin-orbit splitting.

Results.—The ground-state energies versus neutron
number N for the HO potentials are given in Fig. 1 and
for the WS potential in Fig. 2. Up to N ¼ 16 both GFMC
and AFDMC results are included. They agree very well for
the 10-MeV HO interaction, while for @! ¼ 5 MeV, the
AFDMC results are slightly higher than the GFMC results;
the maximum difference is 3%, and more typically results
are within 1%. The bigger difference for the lower density
5-MeV drops presumably arises because the AFDMC !T

does not yet include pairing, while the GFMC does.
In addition to the microscopic calculations, results for

several different Skyrme models are shown in Fig. 1.
We also show results for Thomas-Fermi local density

approximations [25] using Eð!nÞ=N ¼ "ð3=5Þð@2=2mÞ$
ð3#2!nÞ2=3; the upper horizontal line is for free particles,
" ¼ 1, and the lower has " ¼ 0:5, a reasonable approxi-
mation to the EOS of low-density neutron matter. For the
10-MeV well, the density functionals give energies signifi-
cantly below the Monte Carlo results for all N. The ener-
gies are also lower for the 5-MeV well, but less so. This
overbinding is a general feature of all the Skyrme models
considered. It is intriguing that these same Skyrme models
underbind the properties of very dilute neutron systems;

typically they are fit to the neutron matter EOS at
! ¼ 0:04 fm%3 and above.
Since the Skyrme homogeneous neutron matter EOS

have been fit to various microscopic calculations, this
overbinding suggests that the gradient terms in inhomoge-
neous neutron matter should be more repulsive. The
observed differences between ab initio results and the
Skyrme functionals are much larger than the differences
between experiments and Skyrme models in nuclei, as
expected, because of the large extrapolations to inhomoge-
neous neutron matter.
Isovector gradient contributions.—As is apparent in

Fig. 1, for harmonic oscillators there are closed shells at
N ¼ 8, 20, and 40 neutrons. These closed-shell states are
almost exclusively sensitive to the neutron matter EOS and
the isovector gradient terms; pairing and spin-orbit play
nearly no role. Hence they are direct probes of the gradient
terms; to examine them we have altered the isovector
gradient terms in the Skyrme SLY4 interaction [11] to
approximately reproduce the QMC results using a
modified version of the EV8 code [26], The gradient terms
are adjusted without changing any isoscalar (T ¼ 0)
parameters or the homogeneous neutron matter EOS.
The lowest-order gradient contribution to the energy

density for inhomogeneous matter is Gd½r!n'2. The con-
stants Gd are small and often negative, for example,
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Figure 8: The equation of state of neutron matter obtained by using various
models of three-neutron force as described in the text. For each model we impose
that the energy at saturation is 17.7(1) MeV (blue band), or 16.0(1) MeV (green
band). The results are compared with the equations of state obtained with the
AV80 and AV80+UIX Hamiltonians. In the legend we indicate the corresponding
symmetry energy at saturation. Figure taken from (93).
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by the two colored areas of Fig. 8, and red and black points show the results
obtained using a two-body force alone and combined with the UIX model. The
square symbols correspond to results obtained by independently changing the
cuto↵ parameters entering in VR and in the three-pion rings of the three-neutron
force. Figure taken from (93).
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By using the EOS obtained from di↵erent nuclear Hamiltonian, we can study
the e↵ect to the neutron star structure. The results of the M-R diagram of
neutron stars obtained from the EOS calculated in the previous section are shown
in Fig. 10. Since the radii of neutron stars are almost determined by the EOS
slightly above ⇢

0

(98), future measurements will provide strong constraints to the
nuclear Hamiltonian. In particular, radii are directly connected to the pressure
of neutron matter at ⇢

0

, and then there is a natural correlation between E
sym

and L and radii. In the figure the two bands correspond to the EOS described
in the previous section (the corresponding values of the symmetry energy are
also indicated in the figure). The red and black curves correspond to the EOS
calculated with the AV80 two-body interaction alone, and combined with the UIX
three-neutron potential. The relation between E

sym

and the radius is evident,
as the increasing of E

sym

predicts a neutron star with a larger radius. In the
figure, the density of the neutron matter inside the star is indicated with the
orange lines. As anticipated, even at large masses the radius of the neutron star
is mainly governed by the equation of state of neutron matter between 1 and 2
⇢
0

(98).
As is clear from the figure, the AV80 Hamiltonian alone does not support the

recent observed neutron star with a mass of 1.97(4)M� (9) and 2.01(4)M� (10).
the addition of a three-body force to AV80 can provide su�cient repulsion to be
consistent with all of the constraints. The results also suggest that the most mod-
ern neutron matter EOS imply a maximum neutron star radius not larger than
13.5 km, unless a drastic repulsion sets in just above the saturation density (75).
This rules out EOS with large values of L, typical of Walecka-type mean-field
models without higher-order meson couplings which can decrease L. We note
that our analysis suggests it is unlikely that neutron stars have radii lower than

How to further reduce uncertainty at 1-4 times saturation density?
Where is the phase transition ? 

Neutron Star Mass-Radius Relations 
testable with neutron star observations, advanced LIGO



duce large effects in combination with ground-state
wave functions calculated including the short-range n-p
correlations. As most previous calculations were based
on independent-particle-type wave functions, the small-
ness of the resulting MEC contributions is thus under-
stood. To verify this point further, Carlson et al. have
repeated their calculation using the same operators, but
with a Fermi-gas wave function. Instead of an enhance-
ment factor of 1.47 coming from MEC at !q !
=600 MeV/c, they find a factor of 1.06 only, i.e., an eight
times smaller MEC effect.

The results of Carlson et al. also show, somewhat sur-
prisingly, that the MEC contribution is large at low mo-
mentum transfer. It decreases toward the larger Q2, in
agreement with the expectation that at very large Q2 it
falls "Sargsian, 2001# like Q−4 relative to quasielastic
scattering.

From the above discussion it becomes clear that the
Euclidean response, despite inherent drawbacks, is a
valuable quantity. Since the final continuum state does
not have to be treated explicitly, calculations of much
higher quality can be performed than for the response,
and the role of two-body currents can be treated quan-
titatively. Comparison between data and calculation has
shown in particular that for a successful prediction of
MEC, correlated wave functions for the ground state are
needed; such wave functions today are available up to
A$12 and for A=!. Unfortunately, the usage of the
Euclidean response for the time being is restricted to a
regime in which relativistic effects are not too large,
such that they can be included as corrections.

X. L ÕT SEPARATION AND COULOMB SUM RULE

In the impulse approximation, and when neglecting
the "small# contribution from nucleonic convection cur-
rents, the longitudinal and transverse response functions
RL and RT contain the same information and have the
same size. This has sometimes been called scaling of the
zeroth kind "see Sec. VII#. It was realized early on, how-
ever, that the transverse response receives significant
contributions from meson exchange currents and " ex-
citation "which are of a largely transverse nature#. It is
therefore clear that there is a high premium on separat-
ing the L and T responses, both because the L response
is easier to interpret and because of the additional infor-
mation contained in the T response.

The separation of the L and T responses is performed
using the Rosenbluth technique, which is justified only
in the single-photon exchange approximation. The cross
section, divided by a number of kinematical factors

d#

d$d%

&

#Mott

!q!4

Q4 = &RL"!q!,%# +
!q!2

2Q2RT"!q!,%# = ' ,

"65#

is a linear function of the virtual photon polarization

& = %1 +
2!q!2

Q2 tan2(

2
&−1

"66#

with q "Q# being the 3- "4-# momentum transfer and &
varying from 0 to 1 for scattering angles ( between 180°
and 0°. The slope of the linear function yields RL and
the intercept at &=0 yields RT. Figure 30 shows an early
example for an L /T separation, and demonstrates the
excess observed for the transverse strength.

While conceptually very straightforward, this L/T
separation is difficult in practice. It involves data taking
at the same !q!, but varying &, i.e., varying beam energy.
For an accurate separation of RL and RT, obviously the
largest possible range in &, hence beam energy, is re-
quired. As data are usually not taken at constant !q!, but
at a given beam energy and variable energy loss, obtain-
ing the responses at constant !q! involves interpolations
of the data. We show in Fig. 31 two examples for a
Rosenbluth separation, performed on the low- and
large-% side of the quasielastic peak, which also illus-
trate the importance of the forward angle "high-energy#
data for the determination of RL, i.e., the slope of the fit.

The Rosenbluth technique is applicable in the plane-
wave Born approximation, and fails once Coulomb dis-
tortion of the electron waves is present. Neglect of dis-
tortion is justified for the lightest nuclei alone, and only
if RT is not much bigger "or much smaller# than RL.
When one of the two contributions gets too small, even
minor corrections due to Coulomb distortion can have
large effects. At large !q!, for instance, even the determi-
nation of the proton charge form factor via the Rosen-
bluth technique is significantly affected by Coulomb cor-
rections "Arrington and Sick, 2004#. In order to extract
RL and RT in the presence of Coulomb distortion, the
data must first be corrected for these effects; this is dis-
cussed in Sec. XI.

Here we concentrate on the discussion of the longitu-

FIG. 30. Longitudinal "lower data set# and transverse re-
sponses of 12C "Finn et al., 1984#, plotted in terms of the scaling
function F"y#.
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Observations: 
•Scaling with momentum transfer - ‘y’ scaling
•Scaling w/ number of nucleons
But Longitudinal and Transverse Response are very different

Electron and Neutrino Scattering in the QuasiElastic Regime
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Scaling with momentum transfer : ‘y’-scaling
incoherent sum over scattering from single nucleons  

- scaling of 1st kind-

quently discuss scaling and the related superscaling. For
light nuclei and nonrelativistic final states, exact calcula-
tions can be performed. For lower momentum transfers,
an alternative approach, the use of the Euclidean re-
sponse, is available and presented. We then study the
results obtained after a longitudinal/transverse !L /T"
separation of the cross section, and their impact on the
Coulomb sum rule. A bothersome correction, namely,
the effect of Coulomb distortion on the cross sections, is
addressed as well. We also show how data for an impor-
tant model system for nuclear theory, infinite nuclear
matter, can be obtained. Last, we address other fields of
quasielastic scattering and discuss their common aspects.

II. ELECTRON-NUCLEUS SCATTERING IN THE
IMPULSE APPROXIMATION

A. Electron-nucleus cross section

The differential cross section of the process

e + A → e! + X , !1"

in which an electron of initial four-momentum ke
#!Ee ,ke" scatters off a nuclear target to a state of four-
momentum ke!#!Ee! ,ke!", the target final state being un-
detected, can be written in the Born approximation as
!Itzykson and Zuber, 1980"

d2!

d"e!dEe!
=

#2

Q4

Ee!

Ee
L$%W$%, !2"

where #=1/137 is the fine-structure constant, d"e! is the
differential solid angle in the direction specified by ke!,
Q2=−q2, and q=ke−ke!#!& ,q" is the four-momentum
transfer.

The tensor L$%, which can be written neglecting the
lepton mass as

L$% = 2$ke
$ke!

% + ke
%ke!

$ − g$%!keke!"% , !3"

where g$%#diag!1,−1,−1,−1" and !keke!"=EeEe!
−ke ·ke! is fully specified by the measured electron kine-
matic variables. All information on target structure is
contained in the tensor W$%, whose definition involves
the initial and final nuclear states &0' and &X', carrying
four-momenta p0 and pX, as well as the nuclear current
operator J$,

W$% = (
X

)0&J$&X')X&J%&0''!4"!p0 + q − pX" , !4"

where the sum includes all hadronic final states.
The most general expression of the target tensor of

Eq. !4", fulfilling the requirements of Lorentz covari-
ance, conservation of parity, and gauge invariance, can
be written in terms of two structure functions W1 and W2
as

W$% = W1*− g$% +
q$q%

q2 +
+

W2

M2*p0
$ −

!p0q"
q2 q$+*p0

% −
!p0q"

q2 q%+ , !5"

where M is the target mass and the structure functions
depend on the two scalars Q2 and !p0q". In the target
rest frame, !p0q"=m& and W1 and W2 become functions
of the measured momentum and energy transfer &q& and
&.

Substitution of Eq. !5" into Eq. !2" leads to

d2!

d"e!dEe!
= * d!

d"e!
+

M

( ,W2!&q&,&" + 2W1!&q&,&"tan2)

2- , !6"

where ) and !d! /d"e!"M=#2 cos2!) /2" /4Ee sin4!) /2" de-
note the electron scattering angle and the Mott cross
section, respectively.

The right-hand side of Eq. !6" can be rewritten sin-
gling out the contributions of scattering processes in-
duced by longitudinally !L" and transversely !T" polar-
ized virtual photons. The resulting expression is

d2!

d"e!dEe!
= * d!

d"e!
+

M
, Q4

&q&4
RL!&q&,&"

+ *1
2

Q2

&q&2
+ tan2)

2
+RT!&q&,&"- , !7"

where the longitudinal and transverse structure func-
tions are trivially related to W1 and W2 through

RT!&q&,&" = 2W1!&q&,&" !8"

and

Q2

&q&2
RL!&q&,&" = W2!&q&,&" −

Q2

&q&2
W1!&q&,&" . !9"

In principle, calculations of W$% of Eq. !4" at moder-
ate momentum transfer !&q & *0.5 GeV/c" can be carried
out within nuclear many-body theory !NMBT", using
nonrelativistic wave functions to describe the initial and
final states and expanding the current operator in pow-
ers of &q & /m !Carlson and Schiavilla, 1998", where m is
the nucleon mass. The available results for medium-
heavy targets have been obtained mostly using the
mean-field approach, supplemented by inclusion of
model residual interactions to take into account long-
range correlations !Dellafiore et al., 1985".

FIG. 2. Schematic representation of the IA regime, in which
the nuclear cross section is replaced by the incoherent sum of
cross sections describing scattering off individual nucleons, the
recoiling !A−1"-nucleon system acting as a spectator.
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excited to the continuum. The correlation ridge at E
!k2 /2m "see Eq. #28$% is clearly visible. Note that, in the
absence of interactions, the surface shown in Fig. 3 col-
lapses to a collection of !-function peaks distributed
along the line &E & =k2 /2m, with &k & "kF'250 MeV/c.

The proton spectral functions of nuclei with A#4
have been modeled using the local density approxima-
tion #LDA$ #Benhar et al., 1994$, in which the experi-
mental information obtained from nucleon knock-out
measurements is combined with theoretical calculations
of the nuclear matter S#k ,E$ at different densities.

The kinematic region corresponding to low missing
energy and momentum, where shell-model dynamics
dominates, has been studied extensively by coincidence
#e ,e!p$ experiments. The spectral function extracted
from the data is usually written in the factorized form
"compare to Eq. #27$%

SMF#k,E$ = (
n!)F*

Zn&$n#k$&2Fn#E − En$ , #30$

where the spectroscopic factor Zn"1 and the function
Fn#E−En$, describing the energy width of the nth state,
account for the effects of residual interactions not in-
cluded in the mean-field picture. In the Zn→1 and
Fn#E−En$→!#E−En$ limit, Eq. #30$ reduces to Eq. #27$.

The correlation contribution to the nuclear matter
spectral function has been calculated using CBF pertur-
bation theory for a wide range of density values #Benhar
et al., 1994$. Within the LDA scheme, these results can
be used to obtain the corresponding quantity for a finite
nucleus of mass number A from

Scorr#k,E$ =+ d3r%A#r$Scorr
NM„k,E ;% = %A#r$… , #31$

where %A#r$ is the nuclear density distribution and
Scorr

NM#k ,E ;%$ is the correlation part of the spectral func-
tion of uniform nuclear matter at density %. The corre-
lation part of the nuclear matter spectral function can be
easily singled out at zeroth order of CBF, being associ-
ated with two-hole–one-particle intermediate states. At
higher orders, however, one-hole and two-hole–one-
particle states are coupled, and the identification of the
correlation contributions becomes more involved. A full
account of the calculation of Scorr

NM#k ,E$ can be found in
Benhar et al. #1994$.

The full LDA spectral function is written in the form

SLDA#k,E$ = SMF#k,E$ + Scorr#k,E$ , #32$

the spectroscopic factors Zn of Eq. #30$ being con-
strained by the normalization requirement

+ d3kdESLDA#k,E$ = 1. #33$

A somewhat different implementation of LDA has
also been proposed #Van Neck et al., 1995$. Within this
approach, the nuclear matter spectral function is only
used at k#kF#r$, kF#r$ being the local Fermi momen-
tum, whereas the correlation background at k"kF#r$ is

incorporated in the generalized mean-field contribution.
Comparison between the resulting oxygen momentum
distribution and that obtained by Benhar et al. shows
that they are in almost perfect agreement.

The LDA scheme is based on the premise that short-
range nuclear dynamics are unaffected by surface and
shell effects. The validity of this assumption is supported
by the results of theoretical calculations of the nucleon
momentum distribution

n#k$ =+ dE"ZSp#k,E$ + #A − Z$Sn#k,E$% , #34$

showing that for A&4 the quantity n#k$ /A becomes
nearly independent of A at large &k& #'300 MeV/c$. This
feature, illustrated in Fig. 4, suggests that the correlation
part of the spectral function also scales with the target
mass number, so that Scorr

NM#k ,E$ can be used to approxi-
mate Scorr#k ,E$ at finite A.

A direct measurement of the correlation component
of the spectral function of 12C, from the #e ,e!p$ cross
section at missing momentum and energy up to
!800 MeV/c and !200 MeV, respectively, was carried
out by the JLab E97-006 Collaboration #Rohe, 2004$.
The data from the preliminary analysis appear to be
consistent with the theoretical predictions based on
LDA.

D. Contribution of inelastic processes

The approach described in the previous sections is not
limited to quasielastic processes. The tensor defined in
Eqs. #18$ and #19$ describes electromagnetic transitions
of the struck nucleon to any hadronic final state.

To take into account the possible production of had-
rons other than protons and neutrons, one has to replace
w1

N and w2
N given by Eqs. #23$ and #24$ with the inelastic

nucleon structure functions extracted from the analysis
of electron-proton and electron-deuteron scattering data
#Bodek and Ritchie, 1981$. The resulting IA cross sec-

FIG. 4. Calculated momentum distribution per nucleon in 2H,
4He, 16O, and uniform nuclear matter #Schiavilla et al., 1986;
Benhar et al., 1993$.
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FIG. 6 VMC proton momentum distributions in T = 0 light
nuclei.

tightly bound, and the fraction of nucleons at zero mo-
mentum decreases. As nucleons are added to the p-shell,
the distribution at low momenta becomes broader, and
develops a peak at finite k. The sharp change in slope
near k = 2 fm�1 to a broad shoulder is present in all these
nuclei and is attributable to the strong tensor correlation
induced by the pion-exchange part of the NN potential,
further increased by the two-pion-exchange part of the
3N potential. Above k = 4 fm�1, the bulk of the mo-
mentum density appears to come from short-range spin-
isospin correlations.

Two-nucleon momentum distributions, i.e., the proba-
bility of finding two nucleons in a nucleus with relative
momentum q = (k1�k2)/2 and total center-of-mass mo-
mentumQ = k1+k2, provide insight into the short-range
correlations induced by a given Hamiltonian. They can
be formulated analogously to Eqs. (66,68), and projected
with total pair spin-isospin ST , or as pp, np, and nn
pairs. Again, a large collection of VMC results has been
published (Wiringa et al., 2014) and figures and tables
are available on-line (Wiringa, 2014b).

Experiments to search for evidence of short-range cor-
relations have been a recent focus of activity at Je↵er-
son Laboratory. In an (e, e0pN) experiment on 12C at
JLab, a very large ratio ⇠ 20 of pn to pp pairs was
observed at momenta q=1.5–2.5 fm�1 for back-to-back
(Q = 0) pairs (Subedi et al., 2008). VMC calculations
for ⇢pN (q,Q = 0) are shown in Fig. 7 as blue diamonds
for pn pairs and red circles for pp pairs for T = 0 nuclei
from 4He to 12C (Schiavilla et al., 2007; Wiringa et al.,
2014). The pp back-to-back pairs are primarily in 1S0

states and have a node near 2 fm�1, while the pn pairs
are in deuteron-like 3S1 �3 D1 states where the D-wave
fills in the S-wave node. Consequently, there is a large
ratio of pn to pp pairs in this region. This behavior is
predicted to be universal across a wide range of nuclei.
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FIG. 7 VMC pn (blue diamonds) and pp (red circles) back-
to-back (Q = 0) i pair momentum distributions for T = 0
nuclei.
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FIG. 8 VMC proton-proton momentum distributions in 4He
averaged over the directions of q and Q as a function of q for
several fixed values of Q from 0 to 1.25 fm�1.

As Q increases, the S-wave node in pp pairs will gradu-
ally fill in, as illustrated for 4He in Fig. 8, where ⇢pp(q,Q)
is shown as a function of q for several fixed values of Q,
averaged over all directions of q and Q. In contrast,
the deuteron-like distribution in pn pairs is maintained
as Q increases, as shown in Fig. 9, with only a gradual
decrease in magnitude because there are fewer pairs at
high total Q. Recently, these momentum distributions
for 4He have been tested in new JLab experiments and
found to predict the ratio of pp to pn pairs at higher
missing momentum very well (Korover et al., 2014).

np vs. pp

Wiringa, et al; Carlson, et al, RMP 2015

2-nucleon 
momentum 
distributions

Nuclei: 1- and 2-nucleon momentum distributions

Subedi, et al, Science, 2008, …
relation to EMC effect

Experimental measurement of
back-to-back nucleons
dominance of np pairs

Hen, et al., Science, 2014 



Quasi-elastic electron and neutrino
scattering: 1- and 2-nucleon processes

Both correlations and currents are important

Single Nucleon Scattering 
plus scattering from correlated pairs



Euclidean Response

˜R(q, ⌧) = h0| j† exp[�(H�E0 � q2/(2m))⌧ ] j |0i >
• Exact given a model of interactions, currents
• `Thermal’ statistical average
•  Full final-state interactions
•  All contributions included - elastic, low-lying states, quasi elastic, …

duce large effects in combination with ground-state
wave functions calculated including the short-range n-p
correlations. As most previous calculations were based
on independent-particle-type wave functions, the small-
ness of the resulting MEC contributions is thus under-
stood. To verify this point further, Carlson et al. have
repeated their calculation using the same operators, but
with a Fermi-gas wave function. Instead of an enhance-
ment factor of 1.47 coming from MEC at !q !
=600 MeV/c, they find a factor of 1.06 only, i.e., an eight
times smaller MEC effect.

The results of Carlson et al. also show, somewhat sur-
prisingly, that the MEC contribution is large at low mo-
mentum transfer. It decreases toward the larger Q2, in
agreement with the expectation that at very large Q2 it
falls "Sargsian, 2001# like Q−4 relative to quasielastic
scattering.

From the above discussion it becomes clear that the
Euclidean response, despite inherent drawbacks, is a
valuable quantity. Since the final continuum state does
not have to be treated explicitly, calculations of much
higher quality can be performed than for the response,
and the role of two-body currents can be treated quan-
titatively. Comparison between data and calculation has
shown in particular that for a successful prediction of
MEC, correlated wave functions for the ground state are
needed; such wave functions today are available up to
A$12 and for A=!. Unfortunately, the usage of the
Euclidean response for the time being is restricted to a
regime in which relativistic effects are not too large,
such that they can be included as corrections.

X. L ÕT SEPARATION AND COULOMB SUM RULE

In the impulse approximation, and when neglecting
the "small# contribution from nucleonic convection cur-
rents, the longitudinal and transverse response functions
RL and RT contain the same information and have the
same size. This has sometimes been called scaling of the
zeroth kind "see Sec. VII#. It was realized early on, how-
ever, that the transverse response receives significant
contributions from meson exchange currents and " ex-
citation "which are of a largely transverse nature#. It is
therefore clear that there is a high premium on separat-
ing the L and T responses, both because the L response
is easier to interpret and because of the additional infor-
mation contained in the T response.

The separation of the L and T responses is performed
using the Rosenbluth technique, which is justified only
in the single-photon exchange approximation. The cross
section, divided by a number of kinematical factors

d#

d$d%

&

#Mott

!q!4

Q4 = &RL"!q!,%# +
!q!2

2Q2RT"!q!,%# = ' ,

"65#

is a linear function of the virtual photon polarization

& = %1 +
2!q!2

Q2 tan2(

2
&−1

"66#

with q "Q# being the 3- "4-# momentum transfer and &
varying from 0 to 1 for scattering angles ( between 180°
and 0°. The slope of the linear function yields RL and
the intercept at &=0 yields RT. Figure 30 shows an early
example for an L /T separation, and demonstrates the
excess observed for the transverse strength.

While conceptually very straightforward, this L/T
separation is difficult in practice. It involves data taking
at the same !q!, but varying &, i.e., varying beam energy.
For an accurate separation of RL and RT, obviously the
largest possible range in &, hence beam energy, is re-
quired. As data are usually not taken at constant !q!, but
at a given beam energy and variable energy loss, obtain-
ing the responses at constant !q! involves interpolations
of the data. We show in Fig. 31 two examples for a
Rosenbluth separation, performed on the low- and
large-% side of the quasielastic peak, which also illus-
trate the importance of the forward angle "high-energy#
data for the determination of RL, i.e., the slope of the fit.

The Rosenbluth technique is applicable in the plane-
wave Born approximation, and fails once Coulomb dis-
tortion of the electron waves is present. Neglect of dis-
tortion is justified for the lightest nuclei alone, and only
if RT is not much bigger "or much smaller# than RL.
When one of the two contributions gets too small, even
minor corrections due to Coulomb distortion can have
large effects. At large !q!, for instance, even the determi-
nation of the proton charge form factor via the Rosen-
bluth technique is significantly affected by Coulomb cor-
rections "Arrington and Sick, 2004#. In order to extract
RL and RT in the presence of Coulomb distortion, the
data must first be corrected for these effects; this is dis-
cussed in Sec. XI.

Here we concentrate on the discussion of the longitu-

FIG. 30. Longitudinal "lower data set# and transverse re-
sponses of 12C "Finn et al., 1984#, plotted in terms of the scaling
function F"y#.
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3

elastic contribution. The low-lying excitation spectrum
of 12C consists of J⇡ =2+, 0+

2

(Hoyle), and 4+ states with
excitation energies E?

f �E
0

experimentally known to be,
respectively, 4.44, 7.65, and 14.08 in MeV units [35]. The
contributions of these states to the quasi-elastic longitu-
dinal and transverse response functions extracted from
inclusive (e, e0) cross section measurements are not in-
cluded in the experimental results. Therefore, before
comparing experiment with the present theory, which
computes the total inelastic response rather than just the
quasi-elastic one, we need to remove these contributions
explicitly. This is simply accomplished by first defining

E↵(q, ⌧) = E↵(q, ⌧)�
X

f

|hf |O↵(q)|0i|2 e�(Ef�E0)/⌧ ,

(4)
where in the sum only the states f =2+, 0+

2

, and 4+

are included, and then inverting E(q, ⌧) (the energies Ef

di↵er from E?
f , since the former include recoil kinetic en-

ergies). We do not attempt a GFMC calculation of the
excitation energies of these states or associated transi-
tion form factors—it would require explicit calculations
of these states or propagating exp [�(H�E

0

) ⌧ ]O↵(q)|0i
to computationally prohibitive large values of ⌧ . Rather,
we use the experimental energies and form factors, listed
in Table I, to obtain E↵(q, ⌧) from the GFMC-calculated
E↵(q, ⌧). Because of the fast drop of these form fac-
tors with increasing momentum transfer, the correction
in Eq. (4) for the longitudinal channel (↵=L ) is sig-
nificant at q = 300 MeV/c, but completely negligible at
q = 570 MeV/c. In the case of the transverse channel
(↵=T ), possible contributions from E2 and E4 transi-
tions to the 2+ and 4+ states are too small [36, 37] to
have an impact on ET (q, ⌧).

The longitudinal and transverse response functions ob-
tained by maximum-entropy inversion of the E↵(q, ⌧)’s
are displayed in Figs. 1 and 2, respectively. Theoreti-
cal predictions corresponding to GFMC calculations in
which only one-body terms or both one- and two-body
terms are retained in the electromagnetic operators O↵—
denoted by (red) dashed and (black) solid lines and la-
beled GFMC-O

1b and GFMC-O
1b+2b, respectively—are

compared to the experimental response functions deter-
mined from the world data analysis of Jourdan [10] and,
for q=300 MeV/c, from the Saclay data [9]. The (red
and gray) shaded areas show the uncertainty derived
from the dependence of the 1b and 1b+2b results on
the default model adopted in the maximum-entropy in-
version [17]. This uncertainty is quite small. Lastly,
the (green) dash-dotted lines correspond to plane-wave-
impulse-approximation (PWIA) calculations using the
single-nucleon momentum distribution N(p) of 12C ob-
tained in Ref. [7] (see Ref. [1] for details on the PWIA
calculation).

Figures 1–2 immediately lead to the main conclusions
of this work: (i) the dynamical approach outlined above

(with free nucleon electromagnetic form factors) is in
excellent agreement with experiment in both the lon-
gitudinal and transverse channels; (ii) as illustrated by
the di↵erence between the PWIA and GFMC one-body-
current predictions (curves labeled PWIA and GFMC-
O

1b), correlations and interaction e↵ects in the final
states redistribute strength from the quasi-elastic peak to
the threshold and high-energy transfer regions; and (iii)
while the contributions from two-body charge operators
tend to slightly reduce RL(q,!) in the threshold region,
those from two-body currents generate a large excess of
strength in RT (q,!) over the whole !-spectrum (curves
labeled GFMC-O

1b and GFMC-O
1b+2b), thus o↵setting

the quenching noted in (ii) in the quasi-elastic peak.

FIG. 1. (Color online) Electromagnetic longitudinal response
functions of 12C for q in the range (300–570) MeV. Exper-
imental data are from Refs. [9, 10]. See text for further
explanations.

As a result of this study, a consistent picture of the
electromagnetic response of nuclei emerges, which is at
variance with the conventional one of quasi-elastic scat-
tering as being dominated by single-nucleon knock-out.
This fact also has implications for the nuclear weak re-
sponse probed in inclusive neutrino scattering induced

q = 300

q = 570

Longitudinal (charge) Response

PWIA dashed lines
One-nucleon currents: red band

Full result: gray band

Nuclei: inclusive electron scattering: Carbon

q = 300

q = 570

4

by charge-changing and neutral current processes. In
particular, the energy dependence of the cross section
is quite important in extracting neutrino oscillation pa-
rameters. An earlier study of the sum rules associated
with the weak transverse and vector-axial interference re-
sponse functions in 12C found [38] a large enhancement
due to two-body currents in both the vector and axial
components of the neutral current. Only neutral weak
processes have been considered so far, but one would
expect these conclusions to remain valid in the case of
charge-changing ones. In this connection, it is important
to realize that neutrino and anti-neutrino cross sections
di↵er only in the sign of this vector-axial interference re-
sponse, and that this di↵erence is crucial for inferring
the charge-conjugation and parity violating phase, one
of the fundamental parameters of neutrino physics, to
be measured at the Deep Underground Neutrino Exper-
iment (DUNE)[39].

FIG. 2. (Color online) Same as Fig. 1 but for the electromag-
netic transverse response functions. Because pion production
mechanisms are not included, the present theory underesti-
mates the (transverse) strength in the � peak region, see in
particular the q=570 MeV/c case.

We conclude by updating in Fig. 3 the results for the

Coulomb sum rule of 12C obtained in Ref. [5]. The theo-
retical calculation (solid line) and analyses of the experi-
mental data (empty and full circles) are from that work.
We recall that the empty circles are obtained by inte-
grating RL(q,!) up to !

max

, the highest measured en-
ergy transfer, while the full circles also include the “tail”
contribution for ! > !

max

and into the time-like region
(! > q), which cannot be accessed in (e, e0) scattering
experiments, by assuming that the longitudinal response
in 12C is proportional to that of the deuteron [5]. As
the direct calculations demonstrate in Figs. 1–2, there
is non-vanishing strength in the time like-region (see in
particular the top panels of these figures which extend
to ! > q), and this strength needs to be accounted for
before comparing theory to experiment.
The square data points in Fig. 3 have been obtained

by adding to the full circles the contribution due to the
low-lying J⇡ =2+, 0+

2

, and 4+ states. Given the choice of
normalization for SL(q) in Fig. 3, this contribution is sim-
ply given by the sum of the squares—each multiplied by
Z =6—of the (longitudinal) transition form factors listed
in Table I. Among these, the dominant is the form factor
to the 2+ state at 4.44 MeV excitation energy. The con-
tributions associated with these states, in particular the
2+, were overlooked in the analysis of Ref. [5] and, to the
best of our knowledge, in all preceding analyses—the dif-
ference between total inelastic and quasi-elastic strength
alluded to earlier was not fully appreciated. While they
are negligible at large q (certainly at q=570 MeV/c),
they are significant at low q. They help to bring theory
into excellent agreement with experiment.
Figures 1 and 2 clearly demonstrate that the picture

of interacting nucleons and currents quantitatively de-
scribes the electromagnetic response of 12C in the quasi-
elastic regime. The key features necessary for this suc-
cessful description are a complete and consistent treat-
ment of initial-state correlations and final-state interac-
tions and a realistic treatment of two-nucleon currents,
all fully and exactly accounted for in the GFMC calcula-
tions. In the transverse channel the interference between
one- and two-body current (schematically, 1b-2b) con-
tributions is largely responsible for enhancement in the
quasi-elastic peak, while this interference plays a minor
role at large !, where 2b-2b contributions become dom-
inant. The absence of explicit pion production mech-
anisms in this channel restricts the applicability of the
present theory to the quasi-elastic region of RT (q,!), for
!’s below the �-resonance peak. Finally, the so-called
quenching of the longitudinal response near the quasi-
elastic peak emerges in this study as a result of initial-
state correlations and final-state interactions.
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Present status : Outstanding combination of ingredients:

Many important physics problems:    

      electron and neutrino scattering - accelerators
      astrophysical neutrinos
      double beta decay
      neutron star structure and mergers
      larger and neutron rich nuclei
      tests of BSM physics
      connections to other areas:  
           cold atoms,       …..
       Quantum (Nuclear) Dynamics
      
     

Rapidly advancing tools:   
       Exascale Computers (Cray, Intel, AMD)
       Quantum Computers (IBM, Google,  
                                                Microsoft, …)
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