Quantum Monte Carlo and Nuclear Physics: Steven C. Pieper

- Early days of Nuclear QMC
- Ground States
- EM form factors and transitions
- Excited States and Low Energy Scattering
- Neutron Matter and Drops
- Electron and Neutrino Scattering
- Outlook

AV18 celebration

Find in the picture

- Nobel Prize Winner
- Director of INT
- Former Secretary of DOE
- Professors from: Cornell, Illinois, MIT, Minnesota, Pisa, Stony Brook, ...
- Several other past, current leading scientists in NP

My First and last papers w/ Steve

Quantum Monte Carlo calculations of nuclei with A≦7 BS Pudliner, VR Pandharipande, J Carlson, SC Pieper, RB Wiringa Physical Review C 56 (4), 1720, 1997.

Quantum Monte Carlo calculation of neutral-current u- ¹²C inclusive quasielastic scattering A Lovato, S Gandolfi, J Carlson, E Lusk, SC Pieper, R Schiavilla, Physical Review C 97 (2), 022502, 2018

~26 Papers w/ S.C. Pieper

Nuclear Spectra with A≤7 Pion exchange and three-nucleon forces A=8 nuclei Benchmark of A=4 Excited states in A=6,8 RMP 2015. (QMC methods for Nuclear Physics) Tensor Forces and the Ground State of Nuclei Neutron-alpha scattering Nucleon and Pair-momentum distributions Neutron Drops and Skyrme density Functionals Cold neutrons trapped in external fields Charge Form Factor and Sum Rules in 12C Neutral Weak currents in inclusive scattering from 12C EM and neutral-weak response functions of 12C Isovector spin-longitudinal and transverse response of nuclei EM response of 12C Neutron Matter: A superfluid Gas

I was Vijay's Graduate Student at Urbana (VMC of A=3,4; quark models) visited Bob at ANL to work with advanced computers Mal gave QMC lectures at Urbana

Bob and Vijay recruited Steve to QMC work I went to Courant (NYU) to work with Mal Kalos and Kevin Schmidt

Excellent combination of ingredients:

Good physics problem: interacting nucleons to nuclei Rapidly advancing tools: from very primitive to very advanced computers Excellent Collaborators: Steve Pieper Nuclei are a strongly correlated many-body systems

- nuclear binding, Equation of State
- Superfluidity, Beta Decay, ...

- •nucleosynthesis (r-process)
- •beta decays
- •electron and neutrino scattering
- neutron stars
- fundamental symmetries (EDM, beta decay, etc.)

Nuclei and Nuclear Interactions

Strongly Correlated Quantum Many-Body Physics

Must solve the quantum many-body problem: structure & dynamics

cautions:

The Schrodinger equation cannot be solved accurately when the number of particles exceeds about 10. No computer existing, or that will ever exist, can break this barrier because it is a catastrophe of dimension ... Pines and Laughlin (2000)

In general the many electron wave function $\Psi\,$... for a system of N electrons is not a legitimate scientific concept [for large N] Kohn (Nobel lecture, 1998)

but often we do not need a complete description of the system: thermal properties, samples of path integral, cluster expansions,...

Quantum Monte Carlo, Coupled Cluster and other many-body methods

Abudance of the Elements in the Galaxy

Z	Element	Mass fraction (ppk)
1	<u>Hydrogen</u>	739
2	<u>Helium</u>	240
8	<u>Oxygen</u>	10
6	Carbon	5
	Total	99.4%

TI Silent 700 terminals

& CATALOG	MEMORY CATALOG	
	NAME TYPE MAXIMUM CHARS/ COMPLETE RECORDS PECORD RECORDS	
	навси ITNE 100 80 43	
	REMORN AVASE = HABSH 80-CHAR LINES PLAYBACK FILE: HARSH	
TITHE		
▶ CATALOS	MEMORY CATALOG	
	NAME TYPE MAXIMUM CHARSY COMPLETE	
	HARPEH LINE 100 80 43	
	MEMORY AVAIL = 150 80-CHAR LINES	
DUNE	BFAQBAr&TFFir: HABSH	
		-
-	And the second	

Apple II for a terminal

Cyber 175

THE VAST COMPUTATIONAL power of the large-scale Control Data CYBER 176 computer system in the company's Houston Da Contor is monitored from this control console. The system is used primarily to run petroleum industry application

Courant Institute

1980s: The Ultracomputer

Design Underway: Mal Kalos, Allan Gottlieb, and Jack Schwartz

my time as a PD at Courant, with the group of Mal, Paula Whitlock, Jules Moskowitz, w/ frequent visitor Geoffrey Chester around this time

Kevin Schmidt returned to NYU as a chemistry professor

• work on Liquid Helium, nuclear VMC calculations, low-energy nuclear scattering

Over the years, much bigger and faster computers and the software to use them effectively

One 'Solution' to problem of dimension: solve up to $A \sim I2$

Low Energy Scattering

Electroweak Observables: Transitions

Magnetic Moments

Pastore, et al., 2013 and 2014

Nuclear Properties: A=12 Ground and Hoyle States

¹²C charge form factor Lovato, et al., 2013

Auxiliary Field QMC: Monte Carlo also for spins/isospins

Applications to larger nuclei: ¹⁶O,... to neutron matter and stars hyperons in neutron star matter

Neutron Drops and Inhomogeneous Neutron Matter

Cold Neutrons Trapped in External Fields; Gandolfi, et al, PRL 2011

Neutron Matter at higher density and the Three Neutron Interaction

Strong Correlation between symmetry energy at saturation density and its slope

Neutron Star Mass-Radius Relations testable with neutron star observations, advanced LIGO

How to further reduce uncertainty at 1-4 times saturation density? Where is the phase transition ?

Electron and Neutrino Scattering in the QuasiElastic Regime

Scaling with momentum transfer - 'y' scaling
Scaling w/ number of nucleons
But Longitudinal and Transverse Response are very different

Quasi-elastic scattering: higher q, E

Scaling with momentum transfer: 'y'-scaling incoherent sum over scattering from single nucleons - scaling of 1 st kind-

Nuclei: I - and 2-nucleon momentum distributions

Experimental measurement of back-to-back nucleons dominance of np pairs

Subedi, et al, Science, 2008, ... relation to EMC effect

Quasi-elastic electron and neutrino scattering: I - and 2-nucleon processes

Both correlations and currents are important

Single Nucleon Scattering plus scattering from correlated pairs

Euclidean Response

Want to calculate

$$R(q,\omega) = \int dt \langle 0 | \mathbf{j}^{\dagger} \exp[i(H-\omega)t] \mathbf{j} | 0 \rangle$$

Can calculate

$$\tilde{R}(q,\tau) = \langle 0 | \mathbf{j}^{\dagger} \exp[-(\mathbf{H} - \mathbf{E_0} - \mathbf{q^2}/(\mathbf{2m}))\tau] \mathbf{j} | \mathbf{0} \rangle >$$

- Exact given a model of interactions, currents
- `Thermal' statistical average
- Full final-state interactions
- All contributions included elastic, low-lying states, quasi elastic, ...

Excellent agreement w/ EM (L & T) response in A=4,12 Lovato, 2015, PRL 2016

Nuclei: inclusive electron scattering: Carbon

Longitudinal (charge) Response Transverse (curent) Response

similar calculations for ⁴He

charged current neutrino scattering from ¹²C

Some time for Fun DNP in Hawaii

Present status : Outstanding combination of ingredients:

Many important physics problems:

electron and neutrino scattering - accelerators
astrophysical neutrinos
double beta decay
neutron star structure and mergers
larger and neutron rich nuclei
tests of BSM physics
connections to other areas:
cold atoms,
Quantum (Nuclear) Dynamics

Rapidly advancing tools: Exascale Computers (Cray, Intel, AMD) Quantum Computers (IBM, Google, Microsoft, ...)

Thank you for many wonderful years working together: Steve Pieper

