# Symmetry methods for exotic nuclei 

P. Van Isacker, GANIL, France

Role of symmetries in
The nuclear shell model
The interacting boson model
Their relevance for RIBs

## ECT* doctoral training programme

- Title: "Nuclear structure and reactions" (spring 2007, $\pm 3$ months, for PhD students).
- Lecture series on shell model, mean-field approaches, nuclear astrophysics, fundamental interactions, symmetries in nuclei, reaction theory, exotic nuclei,...
- Workshops related to these topics.
- Please:
- Encourage students to apply;
- Submit workshop proposals to ECT*.


## Nuclear superfluidity

- Ground states of pairing hamiltonian have the following correlated character:
- Even-even nucleus $(v=0):\left(\hat{S}_{+}\right)^{n / 2}|0\rangle, \quad \hat{S}_{+}=\sum_{m>0} \hat{a}_{m} \hat{a}_{m}^{t}$
- Odd-mass nucleus ( $v=1$ ): $\hat{a}_{m}^{+}\left(\hat{S}_{+}\right)^{n / 2}|o\rangle$
- Nuclear superfluidity leads to
- Constant energy of first $2^{+}$in even-even nuclei.
- Odd-even staggering in masses.
- Smooth variation of two-nucleon separation energies with nucleon number.
- Two-particle ( 2 n or 2 p ) transfer enhancement.


## Two-nucleon separation energies

a. Shell splitting dominates over interaction.
b. Interaction dominates over shell splitting.
c. $S_{2 \mathrm{n}}$ in tin isotopes.


## Pairing with neutrons and protons

- For neutrons and protons two pairs and hence two pairing interactions are possible:
$-{ }^{1} S_{0}$ isovector or spin singlet $(S=0, T=1): \hat{S}_{+}=\sum_{m>0} \hat{a}_{m \downarrow}^{+} \hat{a}_{\bar{m} \uparrow}^{+}$

$-{ }^{3} S_{1}$ isoscalar or spin triplet $(S=1, T=0): \hat{P}_{+}=\sum_{m>0} \hat{a}_{m \uparrow}^{+} \hat{a}_{\bar{m} \uparrow}^{+}$



## Neutron-proton pairing hamiltonian

- The nuclear hamiltonian has two pairing interactions

$$
\hat{V}_{\text {pairing }}=-g_{0} \hat{S}_{+} \cdot \hat{S}_{-}-g_{1} \hat{P}_{+} \cdot \hat{P}_{-}
$$

- $\mathrm{SO}(8)$ algebraic structure.
- Integrable and solvable for $g_{0}=0, g_{1}=0$ and $g_{0}=g_{1}$.


## Quartetting in $N=Z$ nuclei

- Pairing ground state of an $N=Z$ nucleus:

$$
\left(\cos \theta \hat{S}_{+} \cdot \hat{S}_{+}-\sin \theta \hat{P}_{+} \cdot \hat{P}_{+}\right)^{n / 4}|0\rangle
$$

- $\Rightarrow$ Condensate of " $\alpha$-like" objects.
- Observations:
- Isoscalar component in condensate survives only in $N \sim Z$ nuclei, if anywhere at all.
- Spin-orbit term reduces isoscalar component.


## Generalized pairing models

- Pairing in degenerate orbits between identical particles has $S U(2)$ symmetry.
- Richardson-Gaudin models can be generalized to higher-rank algebras:

$$
\begin{aligned}
& \hat{R}_{i}=\hat{H}_{i}^{s}+g_{0} \sum_{j(x i) \mu, \nu v}^{L} \sum_{i}^{L \hat{X}_{i}^{u} g_{\mu \nu} \hat{X}_{j}^{v}} \\
& g_{0} \sum_{i=1}^{L} \frac{\Lambda_{i}^{a}}{e_{a \alpha}-2 \varepsilon_{i}}-g_{0} \sum_{b=1}^{r} \sum_{\beta=1}^{M_{b}} \frac{A_{b a}}{e_{a \alpha}-e_{b \beta}}=\delta_{a s}
\end{aligned}
$$

## $\mathrm{SO}(5)$ pairing

- Hamiltonian:

$$
\hat{H}=\sum_{j} \varepsilon_{j} \hat{n}_{j}-g_{0} \hat{S}_{+} \cdot \hat{S}_{-}
$$

- "Quasi-spin" algebra is SO(5) (rank 2).
- Example: ${ }^{64} \mathrm{Ge}$ in $p f g_{9 / 2}$ shell (d~9•10 ${ }^{14}$ ).



## The interacting boson model

- Spectrum generating algebra for the nucleus is U(6). All physical observables (hamiltonian, transition operators,...) are expressed in terms of $s$ and $d$ bosons.
- Justification from
- Shell model: $s$ and $d$ bosons are associated with $S$ and $D$ fermion (Cooper) pairs.
- Geometric model: for large boson number the IBM reduces to a liquid-drop hamiltonian.


## The IBM symmetries

- Three analytic solutions: $\mathrm{U}(5), \mathrm{SU}(3) \& \mathrm{SO}(6)$.


RIA Theory meeting, Argonne, April 2006

## Applications of IBM



RIA Theory meeting, Argonne, April 2006

## IBM symmetries and phases



- Open problems:
- Symmetries and phases of two fluids (IBM-2).
- Coexisting phases?
- Existence of three-fluid systems?
D.D. Warner, Nature 420 (2002) 614


## Symmetry chart (SPIRAL-2)



RIA Theory meeting, Argonne, April 2006

## Model with $L=0$ vector bosons

- Correspondence: $\hat{S}_{+} \rightarrow b_{T=1}^{+} \equiv s^{+} \quad \hat{P}_{+} \rightarrow b_{T=0}^{+} \equiv p^{+}$
- Algebraic structure is U(6).
- Symmetry lattice of U(6):

$$
\mathrm{U}(6) \supset\left\{\begin{array}{c}
\mathrm{U}_{S}(3) \otimes \mathrm{U}_{T}(3) \\
\mathrm{SU}(4)
\end{array}\right\} \supset \mathrm{SO}_{S}(3) \otimes \mathrm{SO}_{T}(3)
$$

- Boson mapping is exact in the symmetry limits [for fully paired states of the $\mathrm{SO}(8)$ ].


## Masses of $N \sim Z$ nuclei

- Neutron-proton pairing hamiltonian in nondegenerate shells:

$$
\hat{H}_{\mathrm{F}}=\sum_{j} \varepsilon_{j} \hat{n}_{j}-g_{0} \hat{S}_{+} \cdot \hat{S}_{-}-g_{1} \hat{P}_{+} \cdot \hat{P}_{-}
$$

- $H_{\mathrm{F}}$ maps into the boson hamiltonian:

$$
\begin{aligned}
\hat{H}_{\mathrm{B}} & =a \hat{C}_{2}[\mathrm{SU}(4)]+b \hat{C}_{1}\left[\mathrm{U}_{S}(3)\right] \\
& +c_{1} \hat{C}_{1}[\mathrm{U}(6)]+c_{2} \hat{C}_{2}[\mathrm{U}(6)]+d \hat{C}_{2}\left[\mathrm{SO}_{T}(3)\right]
\end{aligned}
$$

- $H_{\mathrm{B}}$ describes masses of $N \sim Z$ nuclei.


## Masses of $p f$-shell nuclei

- Root-mean-square deviation is 254 keV .
- Parameter ratio: $b / a \approx 5$.


RIA Theory meeting, Argonne, April 2006

## Deuteron transfer in $N=Z$ nuclei

Deuteron Transfer in $N=Z$ Nuclei

P. Van Isacker, ${ }^{1}$ D. D. Warner, ${ }^{2}$ and A. Frank ${ }^{3}$<br>${ }^{1}$ Grand Accélérateur National d'Ions Lourds, B.P. 55027, F-14076 Caen Cedex 5, France<br>${ }^{2}$ CCLLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, United Kingdom<br>${ }^{3}$ Instituto de Ciencias Nucleares, UNAM, Apdo. Postal 70-543, 04510 México, D.F. Mexico<br>(Received 14 September 2004; published 29 April 2005)

Predictions are obtained for $T=0$ and $T=1$ deuteron-transfer intensities between self-conjugate $N=Z$ nuclei on the basis of a simplified interacting boson model which considers bosons without orbital angular momentum but with full spin-isospin structure. These transfer predictions can be correlated with nuclear binding energies in specific regions of the mass table.


## Deuteron transfer in $N=Z$ nuclei

- Deuteron-transfer intesity $c_{T}^{2}$ calculated even-even to odd-odd in $s p$-IBM based on $\mathrm{SO}(8)$. $c_{T}^{2}=\left\langle\left[N_{\mathrm{b}}+1\right] \phi_{\mathrm{B}}\left\|b_{T S}^{+}\right\|\left[N_{\mathrm{b}}\right] \phi_{\mathrm{A}}\right\rangle^{2}{ }_{-20}^{20}$

- Ratio $b / a$ fixed from masses in lower half of 28-50 shell.



## $(\mathrm{d}, \alpha)$ and $\left(\mathrm{p},{ }^{3} \mathrm{He}\right)$ transfer

## SU(4) superfluidity

Exact
Broken


RIA Theory meeting, Argonne, April 2006

## Collective modes in n -rich nuclei

- New collective modes in nuclei with a $\begin{array}{lccccc}\text { neutron-skin? } & \mathrm{U}_{v}(6) & \otimes & \mathrm{U}_{\pi}(6) & \otimes & \mathrm{U}_{v_{s}}(6) \\ \text { Algebraic model via } & \downarrow & & \downarrow & & \downarrow \\ & {\left[N_{v}\right]} & & {\left[N_{\pi}\right]} & & \\ & & & \left.N_{v_{s}}\right]\end{array}$
- Expressions for M1 strength:

$$
\begin{aligned}
& B\left(\mathrm{M} ; 0_{1}^{+} \rightarrow 1_{\mathrm{S}}^{+}\right)=\frac{3}{4 \pi}\left(g_{v}-g_{\pi}\right)^{2} f(N) N_{v} N_{\pi} \\
& B\left(\mathrm{M} 1 ; 0_{1}^{+} \rightarrow 1_{\mathrm{SS}}^{+}\right)=\frac{3}{4 \pi}\left(g_{v}-g_{\pi}\right)^{2} f(N) \frac{N_{v_{\mathrm{s}}} N_{\pi}^{2}}{N_{v}+N_{\pi}}
\end{aligned}
$$

## 'Soft scissors' excitation



RIA Theory meeting, Argonne, April 2006

## Conclusion

Sir Denys in Blood, Birds and the Old Road:
« Accelerators rarely carry out the program on the basis of which their funding was granted: something more exciting always comes along. The lesson is that what matters most is enthusiasm and commitment: the fire in the belly. »

