Symmetry methods for exotic nuclei

P. Van Isacker, GANIL, France

Role of symmetries in

The nuclear shell model The interacting boson model Their relevance for RIBs

ECT* doctoral training programme

- Title: "Nuclear structure and reactions" (spring 2007, ±3 months, for PhD students).
- Lecture series on shell model, mean-field approaches, nuclear astrophysics, fundamental interactions, symmetries in nuclei, reaction theory, exotic nuclei,...
- Workshops related to these topics.
- Please:
 - Encourage students to apply;
 - Submit workshop proposals to ECT*.

Nuclear superfluidity

• Ground states of pairing hamiltonian have the following *correlated* character:

- Even-even nucleus $(\upsilon=0)$: $(\hat{S}_+)^{n/2} |o\rangle$, $\hat{S}_+ = \sum_{m>0} \hat{a}_m^+ \hat{a}_m^+$

- Odd-mass nucleus (υ =1): $\hat{a}_m^+(\hat{S}_+)^{n/2}|o\rangle$

- Nuclear superfluidity leads to
 - Constant energy of first 2⁺ in even-even nuclei.
 - Odd-even staggering in masses.
 - Smooth variation of two-nucleon separation energies with nucleon number.
 - Two-particle (2n or 2p) transfer enhancement.

Two-nucleon separation energies

- a. Shell splitting dominates over interaction.
- b. Interaction dominates over shell splitting.
- c. S_{2n} in tin isotopes.

Pairing with neutrons and protons

• For neutrons and protons *two* pairs and hence *two* pairing interactions are possible:

 $- {}^{1}S_{0}$ isovector or spin singlet (S=0,T=1): $\hat{S}_{+} = \sum \hat{a}_{m\downarrow}^{+} \hat{a}_{m\uparrow}^{+}$

 $-{}^{3}S_{1}$ isoscalar or spin triplet (S=1,T=0): $\hat{P}_{+} = \sum \hat{a}_{m\uparrow}^{+} \hat{a}_{\overline{m\uparrow}}^{+}$

Neutron-proton pairing hamiltonian

• The nuclear hamiltonian has two pairing interactions

$$\hat{V}_{\text{pairing}} = -g_0 \hat{S}_+ \cdot \hat{S}_- - g_1 \hat{P}_+ \cdot \hat{P}_-$$

- SO(8) algebraic structure.
- Integrable and solvable for $g_0=0, g_1=0$ and $g_0=g_1$.

B.H. Flowers & S. Szpikowski, Proc. Phys. Soc. 84 (1964) 673

Quartetting in N=Z nuclei

- Pairing ground state of an N=Z nucleus: $\left(\cos\theta \hat{S}_{+}\cdot\hat{S}_{+}-\sin\theta \hat{P}_{+}\cdot\hat{P}_{+}\right)^{n/4}|o\rangle$
- \Rightarrow Condensate of " α -like" objects.
- Observations:
 - Isoscalar component in condensate survives only in N~Z nuclei, if anywhere at all.
 - Spin-orbit term *reduces* isoscalar component.

Generalized pairing models

- Pairing in degenerate orbits between identical particles has SU(2) symmetry.
- Richardson-Gaudin models can be generalized to higher-rank algebras:

$$\hat{R}_{i} = \hat{H}_{i}^{s} + g_{0} \sum_{j(\neq i)\mu,\nu}^{L} \sum_{i \neq j} \frac{\hat{X}_{i}^{\mu}g_{\mu\nu}\hat{X}_{j}^{\nu}}{2\varepsilon_{i} - 2\varepsilon_{j}}$$

$$g_{0} \sum_{i=1}^{L} \frac{\Lambda_{i}^{a}}{e_{a\alpha} - 2\varepsilon_{i}} - g_{0} \sum_{b=1}^{r} \sum_{\beta=1}^{M_{b}} \frac{A_{ba}}{e_{a\alpha} - e_{b\beta}} = \delta_{as}$$

J. Dukelsky et al., to be published

SO(5) pairing

• Hamiltonian:

$$\hat{H} = \sum_{j} \varepsilon_{j} \hat{n}_{j} - g_{0} \hat{S}_{+} \cdot \hat{S}_{-}$$

- "Quasi-spin" algebra is SO(5) (rank 2).
- Example: ⁶⁴Ge in $pfg_{9/2}$ shell ($d \sim 9 \cdot 10^{14}$).

J. Dukelsky et al., Phys. Rev. Lett. 96 (2006) 072503

RIA Theory meeting, Argonne, April 2006

The interacting boson model

- Spectrum generating algebra for the nucleus is U(6). All physical observables (hamiltonian, transition operators,...) are expressed in terms of *s* and *d* bosons.
- Justification from
 - Shell model: *s* and *d* bosons are associated with *S* and *D* fermion (*Cooper*) pairs.
 - Geometric model: for large boson number the IBM reduces to a liquid-drop hamiltonian.

A. Arima & F. Iachello, Ann. Phys. (NY) **99** (1976) 253; **111** (1978) 201; **123** (1979) 468 RIA Theory meeting, Argonne, April 2006

The IBM symmetries

• Three analytic solutions: U(5), SU(3) & SO(6).

Applications of IBM

RIA Theory meeting, Argonne, April 2006

IBM symmetries and phases

- Open problems:
 - Symmetries and phases of two fluids (IBM-2).
 - Coexisting phases?
 - Existence of three-fluid systems?

RIA Theory meeting, Argonne, April 2006

D.D. Warner, Nature 420 (2002) 614

Symmetry chart (SPIRAL-2)

Model with L=0 vector bosons

- Correspondence: $\hat{S}_{+} \rightarrow b_{T=1}^{+} \equiv s^{+}$ $\hat{P}_{+} \rightarrow b_{T=0}^{+} \equiv p^{+}$
- Algebraic structure is U(6).
- Symmetry *lattice* of U(6):

$$U(6) \supset \begin{cases} U_{s}(3) \otimes U_{T}(3) \\ SU(4) \end{cases} \supseteq SO_{s}(3) \otimes SO_{T}(3)$$

• Boson mapping is *exact* in the symmetry limits [for fully paired states of the SO(8)].

Masses of N~Z nuclei

• Neutron-proton pairing hamiltonian in *nondegenerate* shells:

$$\hat{H}_{\rm F} = \sum_{i} \varepsilon_{j} \hat{n}_{j} - g_{0} \hat{S}_{+} \cdot \hat{S}_{-} - g_{1} \hat{P}_{+} \cdot \hat{P}_{-}$$

- $H_{\rm F}$ maps into the boson hamiltonian: $\hat{H}_{\rm B} = a\hat{C}_2[SU(4)] + b\hat{C}_1[U_s(3)]$ $+ c_1\hat{C}_1[U(6)] + c_2\hat{C}_2[U(6)] + d\hat{C}_2[SO_T(3)]$
- $H_{\rm B}$ describes masses of $N \sim Z$ nuclei.

E. Baldini-Neto et al., Phys. Rev. C 65 (2002) 064303

Masses of *pf*-shell nuclei

- Root-mean-square deviation is 254 keV.
- Parameter ratio: $b/a \approx 5$.

RIA Theory meeting, Argonne, April 2006

Deuteron transfer in N=Z nuclei

Deuteron Transfer in N = Z Nuclei

P. Van Isacker,¹ D. D. Warner,² and A. Frank³

 ¹Grand Accélérateur National d'Ions Lourds, B.P. 55027, F-14076 Caen Cedex 5, France
 ²CCLRC Daresbury Laboratory, Daresbury, Warrington WA4 4AD, United Kingdom
 ³Instituto de Ciencias Nucleares, UNAM, Apdo. Postal 70-543, 04510 México, D.F. Mexico (Received 14 September 2004; published 29 April 2005)

Predictions are obtained for T = 0 and T = 1 deuteron-transfer intensities between self-conjugate N = Z nuclei on the basis of a simplified interacting boson model which considers bosons without orbital angular momentum but with full spin-isospin structure. These transfer predictions can be correlated with nuclear binding energies in specific regions of the mass table.

RIA Theory meeting, Argonne, April 2006

Deuteron transfer in N=Z nuclei

• Deuteron-transfer intesity c_T^2 calculated in *sp*-IBM based on SO(8).

 Ratio *b/a* fixed from masses in lower half of 28-50 shell.

(d, α) and (p,³He) transfer

Collective modes in n-rich nuclei

- New collective modes in nuclei with a neutron-skin? $U_{\nu}(6) \otimes U_{\pi}(6) \otimes U_{\nu_s}(6)$
- Expressions for M1 strength:

$$B(M1;0_1^+ \to 1_S^+) = \frac{3}{4\pi} (g_v - g_\pi)^2 f(N) N_v N_\pi$$
$$B(M1;0_1^+ \to 1_{SS}^+) = \frac{3}{4\pi} (g_v - g_\pi)^2 f(N) \frac{N_{v_S} N_\pi^2}{N_v + N_\pi}$$

D.D. Warner & P. Van Isacker, Phys. Lett. B 395 (1997) 145

'Soft scissors' excitation

RIA Theory meeting, Argonne, April 2006

Conclusion

Sir Denys in *Blood*, *Birds and the Old Road*:

 Accelerators rarely carry out the program on the basis of which their funding was granted: something more exciting always comes along. The lesson is that what matters most is enthusiasm and commitment: the fire in the belly. »

D. Wilkinson, Annu. Rev. Nucl. Part. Sci. 45 (1995) 1