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Symmetry Energy
Bethe-Weizsäcker (BW) formula:

E = −aV A + aS A2/3 + aC
Z 2

A1/3 +aA
(N − Z )2

A
+∆

Symmetry energy: change in nuclear energy associated with
changing neutron-proton asymmetry

In nuclear matter: E(ρn, ρp) = E0(ρ) + E1(ρn, ρp)

E1 = E − E0 ' S(ρ)
(

ρn−ρp
ρ

)2
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Constraints for Symmetric Matter
Minimum at ρ0 ' 0.16 fm−3 with E0(ρ0) ' −16 MeV
Incompressibility from giant resonances: K ∼ 235 MeV
Youngblood, Garg, Colo et al. ’05

At high ρ, constraints on nuclear
pressure P = ρ2 ∂E/∂ρ from
flow in semicentral reactions
PD,Lacey&Lynch Science298(02)

Neutron Matter: E = E0 + S
Uncertain symmetry energy
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Symmetry Energy Uncertainties

Compilation of symmetry
energies in literature

In neutron matter:
E = E0 + S P ' ρ2 dS/dρ

Empirical correlation
R P−1/4 ≈ const
Lattimer&Prakash ApJ550(01)
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Symmetry Energy in Binding Formula
Standard formula: ∝ A

E = −aV A + aS A2/3 + aC
Z 2

A1/3 + aA
(N − Z )2

A
+ δ

Surface energy: ES = aS A2/3 =
aS

4π r2
0

4π r2
0 A2/3 =

aS

4π r2
0
S

ES

S
= σ =

aS

4π r2
0

(tension – work per area)

→ As nucleons at surface less bound, increasing surface
requires work.

Symmetry energy reduces the binding, so, as n-p asymmetry
increases, the work to create surface should drop (you cannot
subtract same thing twice from volume!)

σ =
∂ ES

∂ S
↘ (in the general definition of tension)
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From Tension to Surface n-p Excess
σ as intensive should depend on an intensive quantity
characterizing neutron-proton (n-p) asymmetry → µA

µA =
∂ E

∂ (N − Z )
=

1
2

(µn − µp)

Since tension should drop no matter whether more neutrons or
protons → quadratic in chemical potential

σ = σ0 − γ µ2
A

Surface energy ES must then also depend on µA. . .

Partial-derivative consistency for E [Φ = µA(N − Z )− E ;
∂Φ/∂µA = N − Z ] then requires: Surface must contain n-p excess!

(NS − ZS) ∝ µA

Surface energy must be quadratic in the excess and/or µA.
?How can surface hold particles?!
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Volume-Surface Separation á la Gibbs
Gibbs definition for surface
quantities - difference be-
tween actual and idealized
where volume contribution
only: FS = F − FV

result depends on surface
position R: AS = A−AV = 0

2-component system: sur-
faces for neutrons and pro-
tons may be displaced.

Net surface position set de-
manding: AS = 0.
However, NS − ZS 6= 0!
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Symmetry Energy Modification
With derivative consistency resolved, σ = σ0 − γ µ2

A yields for
surface energy

ES = σ0 S + γ µ2
A S = E0

S +
1

4γ

(NS − ZS)2

S

= E0
S + aS

A
(NS − ZS)2

A2/3 (surface capacitor)

Volume similarly: EV = E0
V +aV

A
(NV − ZV )2

A
(volume capacitor)

Net Energy & Asymmetry: E = ES+EV , N−Z = NS−ZS+NV−ZV

Minimization of E with respect to the asymmetry partition:
analogous to coupled capacitors, qX = NX − ZX ,
EX = E0

X + q2
X /2CX , with the result

E = E0 +
q2

2C
= E0 +

(N − Z )2

A
aV

A
+ A2/3

aS
A

volume capacitance surface capacitanceSymmetry Energy P. Danielewicz
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Modified Binding Formula

E = −aV A + aS A2/3 + aC
Z 2

A1/3 +
aV

A

1 + A−1/3 aV
A /aS

A

(N − Z )2

A

aA(A)

Regular formula for aV
A /aS

A = 0 - i.e. surface not accepting the
asymmetry excess (aS

A = ∞) - or for A →∞.
Modified formula: weakening of the symmetry term for low A.

Whether one can replace aA(A) by aV
A for large A depends on

the ratio aV
A /aS

A.

The ratio may be determined from surface asymmetry excess,
as surface-to-volume asymmetry ratio:

NS − ZS

NV − ZV
=

CS

CV
=

A2/3/aS
A

A/aV
A

= A−1/3 aV
A /aS

A
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Asymmetry Skins
Measuring n-p skin sizes difficult: 2 different probes needed.
E.g. electrons + protons, π+ + π−, protons + neutrons
Issues: 1. Data in terms of difference of n and p rms radii.
Conversion straightforward, if diffuseness similar for n and p.
2. For heavy nuclei, Coulomb competes with symmetry energy,
pushing protons out to surface and polarizing interior.
⇒ minimize sum of 3 energies w/respect to asymmetry:

E = EV + ES + EC EC =
e2

4πε0

1
R

(
3
5

Z 2
V + ZV ZS +

1
2

Z 2
S

)
From the modified minimization, analytic difference of rms radii:

〈r2〉1/2
n − 〈r2〉1/2

p

〈r2〉1/2 =
A

6NZ
N − Z

1 + A1/3 aS
A/aV

A
− aC

168aV
A

A5/3

N

10
3 + A1/3 aS

A/aV
A

1 + A1/3 aS
A/aV

A

symmetry energy only Coulomb correction
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Testing Macroscopic Theory

Comparison of the ana-
lytic formula (lines) with
a multitude of nonrel-
ativistic and relativistic
mean-field calculations
by Typel and Brown
PRC64(01)027302
(symbols)

Accuracy, in reproducing microscopic theory, of ∼0.01 fm ?!
Other tests: Thomas-Fermi
⇒ next data
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Comparison to Skin Data

Systematic of n-p skin sizes for different Na isotopes by
Suzuki et al., PRL75(95)3241 + other data

difference between the rms n and p radii vs A
aV

A /aS
A ∼ 3
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Global Fit to Skin Data

1-σ & 2-σ limits on
aV

A /aS
A as a function

of aV
A

dependence on aV
A

due to Coulomb

As A−1/3 aV
A /aS

A never small, symmetry term not expandable;
Bethe-Weizsäcker not acceptable at the macroscopic level.
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Charge Invariance
Conclusions on symmetry term details, following mass-formula
fits, are interrelated with conclusions on other terms:
isospin-dependent Coulomb, Wigner & pairing +
isospin-independent, due to (N − Z )/A - A correlations along
line of stability (PD NPA727(03)233)!
Best would be to study the symmetry term in isolation from the
rest of mass formula! Absurd?!

Charge invariance comes to rescue: lowest nuclear states
characterized by different isospin values (T ,Tz),
Tz = (Z − N)/2. Nuclear energy scalar in isospin space:

EA = aA(A)
(N − Z )2

A
= 4 aA(A)

T 2
z

A

→ EA = 4 aA(A)
T 2

A
= 4 aA(A)

T (T + 1)

A

Symmetry Energy P. Danielewicz



Introduction Binding Formula Symmetry Coefficients Conclusions extras

Charge Invariance
Conclusions on symmetry term details, following mass-formula
fits, are interrelated with conclusions on other terms:
isospin-dependent Coulomb, Wigner & pairing +
isospin-independent, due to (N − Z )/A - A correlations along
line of stability (PD NPA727(03)233)!
Best would be to study the symmetry term in isolation from the
rest of mass formula! Absurd?!

Charge invariance comes to rescue: lowest nuclear states
characterized by different isospin values (T ,Tz),
Tz = (Z − N)/2. Nuclear energy scalar in isospin space:

EA = aA(A)
(N − Z )2

A
= 4 aA(A)

T 2
z

A

→ EA = 4 aA(A)
T 2

A
= 4 aA(A)

T (T + 1)

A

Symmetry Energy P. Danielewicz



Introduction Binding Formula Symmetry Coefficients Conclusions extras

Charge Invariance
Conclusions on symmetry term details, following mass-formula
fits, are interrelated with conclusions on other terms:
isospin-dependent Coulomb, Wigner & pairing +
isospin-independent, due to (N − Z )/A - A correlations along
line of stability (PD NPA727(03)233)!
Best would be to study the symmetry term in isolation from the
rest of mass formula! Absurd?!

Charge invariance comes to rescue: lowest nuclear states
characterized by different isospin values (T ,Tz),
Tz = (Z − N)/2. Nuclear energy scalar in isospin space:

EA = aA(A)
(N − Z )2

A
= 4 aA(A)

T 2
z

A

→ EA = 4 aA(A)
T 2

A
= 4 aA(A)

T (T + 1)

A

Symmetry Energy P. Danielewicz



Introduction Binding Formula Symmetry Coefficients Conclusions extras

A-Dependent Symmetry Energy from IAS Data

→ EA = 4 aA(A)
T (T + 1)

A
In the ground state T takes on the lowest possible value
T = |Tz | = |N − Z |/2. Through ’+1’ most of the Wigner term absorbed.

Formula generalized to the lowest state of a given T . Pairing
term contributes depending on evenness of T .
?Lowest state of a given T : isobaric analogue state (IAS) of
some neighboring nucleus ground-state.

T=0

T=1

Study of changes in the
symmetry term possible
nucleus by nucleus
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IAS Data Analysis
In the same nucleus, when pairing drops out:

E2(T2)− E1(T1) =
4 aA

A
{

T2(T2 + 1)− T1(T1 + 1)
}

?
a−1

A (A) =
4 ∆T 2

A ∆E
= (aV

A )−1 + (aS
A)−1 A−1/3

extracted inverse
symmetry
coefficient

available IAS with
largest energy
differences used

Antony et al.
ADNDT66(97)1
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Fit Combination

Conclusions: 30.0 MeV . aV
A . 32.5 MeV, 2.6 . aV

A /aS
A . 3.0

next: Symmetry-coeff ratio constraints low-ρ dependence of EA.
Symmetry Energy P. Danielewicz
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Microscopic Background
In TF approx with E = E0 +

∫
d3r ρ S(ρ)

(
ρn−ρp

ρ

)2
, where S -

symmetry energy (S(ρ0) = aV
A ), Gibbs prescription for

semiinfinite matter yields: aV
A

aS
A

=
3
r0

∫
dr

ρ(r)
ρ0

[
S(ρ0)

S(ρ(r))
− 1
]

⇒ aV
A /aS

A probes shape
of S(ρ)!
For S(ρ) ≡ aV

A , aV
A /aS

A = 0!
Surface capacitance emerges,
because S drops with ρ.

From 2.6 . aV
A /as

A . 3.0
for mean-field structure calcs
(Furnstahl, NPA706(02)85 -
symbols), we deduce symme-
try energy reduction at ρ0/2:

0.58 . S(ρ0/2)/aV
A . 0.69
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Further Consequences
In S(ρ) ' aV

A (ρ/ρ0)
γ : γ = (0.54− 0.77).

Neutron Stars: Pressure estimate from S(ρ) +
Lattimer-Prakash scaling, R P1/4 ' const, yields
11.5 km . R . 13.5 km for an 1.4 M� star.

Density dependence too weak for the direct Urca cooling.

Mass Formula Performance: Fit residuals for light asymmetric
nuclei, when either
following the Bethe
-Weizsäcker formula
(open symbols) or the
modified formula with
aV

A /aS
A = 2.8 imposed

(closed), i.e. the same
parameter No.

Symmetry Energy P. Danielewicz
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Conclusions
Macroscopic consistency puts surface symmetry energy
into binding formula, with volume and surface symmetry
energies combining as energies of coupled capacitors.
Extension implies surface asymmetry skins and weakening
of the symmetry term for light nuclei.
Skins restrict ratio of symmetry coefficients; charge
invariance allows to study symmetry term in one nucleus.
Skin/IAS fits: 30.0 MeV . aV

A . 32.5 MeV and
2.6 . aV

A /aS
A . 3.0.

Surface symmetry energy emerges due to weakening of
symmetry energy with density. aV

A /aS
A ratio places S within

(0.58− 0.69)aV
A at ρ0/2. Consequences for neutron stars.

Description of giant dipole resonances improves with
inclusion of surface symmetry energy. Resonances more
of a GT type for light nuclei and of an SJ type for heavy.
Next: Shell-correction for IAS
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Questions for RIA

Skin-size vs asymmetry (high-T low-A data)
High-T IAS
Dependence on asymmetry for central-collision
observables:

collective flow
yields (S(ρ > ρ0))
stopping
asymmetry transport
low-velocity correlations
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Asymmetry Oscillations
Movement of neutrons vs protons - giant resonances visible in
excitation cross sections
2 classical models of the simplest giant dipole resonance
(GDR)

Goldhaber-Teller (GT): n & p distributions oscillate against each
other as rigid entities:

EGDR = ~Ω ∝
√

A2/3/A = A−1/6

Steinwedel-Jensen (SJ): Standing wave of n-p in the interior
with vanishing flux at the surface

EGDR = ~ca/λ ∝ A−1/3

Symmetry Energy P. Danielewicz
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GDR Evolution with Mass
GT model: aV

A →∞ SJ model: aS
A →∞

Realistic model: SJ but asymmetry flux may flow in and out of
the surface. . . The boundary condition produces:

qR j1(qR) =
3 aS

A A1/3

aV
A

j ′1(qR)

j1 - spherical Bessel func-
tion, typical for waves when
spherical symmetry; q -
wavenumber, EGDR = ~ cA q

As aS
A A1/3/aV

A changes, the
condition changes between
that of open and close pipe
and the resonance evolves
between GT and SJ

Symmetry Energy P. Danielewicz
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Transition Densities
Local Amplitude ≡ Transition Density

ρ1(r) =
DV

ρ0
j1(qr)

[
ρ(r)−

aV
A

3 aS
A A1/3

r
dρ

dr

]
Compared to microscopic calculations (Khamerdzhiev et al.,
NPA624(97)328) GSC, in-
cluding 2p-2h excitations
and ground-state correla-
tions
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Liquid Droplet Model
Liquid droplet model (Myers & Swiatecki ’69)

E =

(
−a1 + J δ

2 − 1
2

K ε2 +
1
2

M δ
4
)

A

+
(

a2 + Q τ2 + a3 A−1/3
)

A2/3 + c1
Z 2

A1/3

(
1 +

1
2

τ A−1/3
)

−c2 Z 2 A1/3 − c3
Z 2

A
− c4

Z 4/3

A1/3

where

ε =
1
K

(
−2a2 A−1/3 + L δ

2
+ c1

Z 2

A4/3

)
, τ =

3
2

J
Q
(
δ + δs

)
δ =

I + 3
8

c1
Q

Z 2

A5/3

1 + 9
4

J
Q A−1/3

, δs = − c1

12J
Z

A1/3 , I =
N − Z
N + Z

Q = H/(1− 2
3 P/J). Expansion in asymmetry yields results

consistent with current, but approach more complex. . .
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Liquid Drop Model
The current formula:

E = −aV A + aS A2/3 + aC
Z 2

A1/3 + aV
A

(N − Z )2

A
1

1 +
aV

A
aS

A
A−1/3

Liquid drop model [LDM] (Myers & Swiatecki ’66)

E = −aV

(
1− κV I2

)
A + aS

(
1− κS I2

)
A2/3

+aC
Z 2

A1/3 − a4
Z 2

A

with I = (N − Z )/A. LDM corresponds to the expansion in the
current formula:

1
A
aV

A
+ A2/3

aS
A

'
aV

A
A

(
1−

aV
A

aS
A

A−1/3

)

But that expansion only accurate for A & 1000, i.e. never!
Symmetry Energy P. Danielewicz
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