Introduction	Binding Formula	Symmetry Coefficients	Conclusions	extras ooooo

Symmetry Energy

P. Danielewicz

Natl Superconducting Cyclotron Lab, Michigan State U

3rdANL/MSU/INT/JINA RIA Meeting, April 4-7, 2006

Outline

2 Binding Formula

- Surface Symmetry Energy
- Asymmetry Skins
- Symmetry Coefficients
 - Skin Data
 - Isobaric Analog States
 - Density Dependence of Symmetry Energy

4 Conclusions

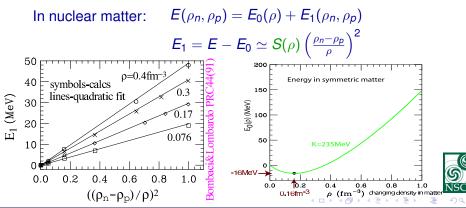
∃ ► < ∃ ►</p>

Symmetry Energy

Bethe-Weizsäcker (BW) formula:

$$E = -a_V A + a_S A^{2/3} + a_C rac{Z^2}{A^{1/3}} + a_A rac{(N-Z)^2}{A} + \Delta$$

Symmetry energy: change in nuclear energy associated with changing neutron-proton asymmetry

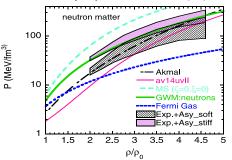


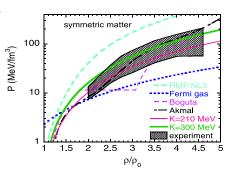
000

Constraints for Symmetric Matter Minimum at $\rho_0 \simeq 0.16 \text{ fm}^{-3}$ with $E_0(\rho_0) \simeq -16 \text{ MeV}$ Incompressibility from giant resonances: $K \sim 235 \text{ MeV}$ Youngblood, Garg, Colo *et al.* '05

At high ρ , constraints on nuclear pressure $P = \rho^2 \partial E / \partial \rho$ from flow in semicentral reactions

PD,Lacey&Lynch Science298(02)

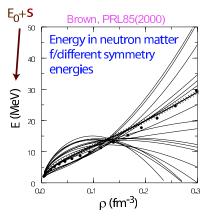




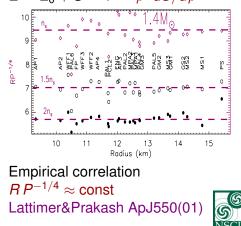
Neutron Matter: $E = E_0 + S$ Uncertain symmetry energy

Symmetry Energy Uncertainties

Compilation of symmetry energies in literature



In neutron matter: $E = E_0 + S$ $P \simeq \rho^2 dS/d\rho$



Standard formula:

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_A \frac{(N-Z)^2}{A} + \delta$$

Surface energy:
$$E_S = a_S A^{2/3} = \frac{a_S}{4\pi r_0^2} 4\pi r_0^2 A^{2/3} = \frac{a_S}{4\pi r_0^2} S$$

$$\frac{E_S}{S} = \sigma = \frac{a_S}{4\pi r_0^2} \quad \text{(tension - work per area)}$$

 \rightarrow As nucleons at surface less bound, increasing surface requires work.

Symmetry energy reduces the binding, so, as n-p asymmetry increases, the work to create surface should drop (you cannot subtract same thing twice from volume!)

(in the general definition of tension)

イロン イボン イヨン イヨ

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_A \frac{(N-Z)^2}{A} + \delta$$

Surface energy: $E_S = a_S A^{2/3} = \frac{a_S}{4\pi r_0^2} 4\pi r_0^2 A^{2/3} = \frac{a_S}{4\pi r_0^2} S$ $\frac{E_S}{S} = \sigma = \frac{a_S}{4\pi r_0^2}$ (tension – work per area)

 \rightarrow As nucleons at surface less bound, increasing surface requires work.

Symmetry energy reduces the binding, so, as n-p asymmetry increases, the work to create surface should drop (you cannot subtract same thing twice from volume!)

(in the general definition of tension)

ヘロト ヘ回ト ヘヨト ヘヨト

 $\propto A$

Standard formula:

Symmetry Energy in Binding Formula Standard formula:

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_A \frac{(N-Z)^2}{A} + \delta$$

Surface energy:
$$E_S = a_S A^{2/3} = \frac{a_S}{4\pi r_0^2} 4\pi r_0^2 A^{2/3} = \frac{a_S}{4\pi r_0^2} S$$

$$\frac{E_S}{S} = \sigma = \frac{a_S}{4\pi r_0^2} \quad \text{(tension - work per area)}$$

 \rightarrow As nucleons at surface less bound, increasing surface requires work.

Symmetry energy reduces the binding, so, as n-p asymmetry increases, the work to create surface should drop (you cannot subtract same thing twice from volume!)

(in the general definition of tension)

 $\sigma = \frac{\partial E_S}{\partial S}$

From Tension to Surface n-p Excess

 σ as intensive should depend on an intensive quantity characterizing neutron-proton (n-p) asymmetry $\rightarrow \mu_A$

$$\mu_{A} = \frac{\partial E}{\partial (N - Z)} = \frac{1}{2} (\mu_{n} - \mu_{p})$$

Since tension should drop no matter whether more neutrons or protons \rightarrow quadratic in chemical potential

$$\sigma = \sigma_0 - \gamma \, \mu_A^2$$

Surface energy E_S must then also depend on μ_A ...

Partial-derivative consistency for $E \ [\Phi = \mu_A (N - Z) - E;$ $\partial \Phi / \partial \mu_A = N - Z$] then requires: Surface must contain n-p excess!

$$(N_S - Z_S) \propto \mu_A$$

Surface energy must be quadratic in the excess and/or μ_A . ?How can surface hold particles?!

Symmetry Energy

From Tension to Surface n-p Excess

 σ as intensive should depend on an intensive quantity characterizing neutron-proton (n-p) asymmetry $\rightarrow \mu_A$

$$\mu_{A} = \frac{\partial E}{\partial (N - Z)} = \frac{1}{2} (\mu_{n} - \mu_{p})$$

Since tension should drop no matter whether more neutrons or protons \rightarrow quadratic in chemical potential

$$\sigma = \sigma_0 - \gamma \, \mu_A^2$$

Surface energy E_S must then also depend on μ_A ...

Partial-derivative consistency for $E [\Phi = \mu_A(N - Z) - E;$ $\partial \Phi / \partial \mu_A = N - Z]$ then requires: Surface must contain n-p excess!

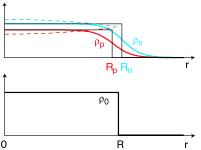
$$(N_S - Z_S) \propto \mu_A$$

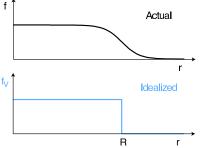
Surface energy must be quadratic in the excess and/or μ_A . ?How can surface hold particles?!

Volume-Surface Separation á la Gibbs

Gibbs definition for surface quantities - difference between actual and idealized where volume contribution only: $F_S = F - F_V$

result depends on surface position R: $A_S = A - A_V = 0$





2-component system: surfaces for neutrons and protons may be displaced.

Net surface position set demanding: $A_S = 0$. However, $N_S - Z_S \neq 0$!

Symmetry Energy Modification

With derivative consistency resolved, $\sigma = \sigma_0 - \gamma \mu_A^2$ yields for surface energy

$$E_{S} = \sigma_{0} S + \gamma \mu_{A}^{2} S = E_{S}^{0} + \frac{1}{4\gamma} \frac{(N_{S} - Z_{S})^{2}}{S}$$
$$= E_{S}^{0} + a_{A}^{S} \frac{(N_{S} - Z_{S})^{2}}{A^{2/3}} \qquad (\text{surface capacitor})$$

Volume similarly: $E_V = E_V^0 + a_A^V \frac{(N_V - Z_V)^2}{A}$ (volume capacitor)

Net Energy & Asymmetry: $E = E_S + E_V$, $N - Z = N_S - Z_S + N_V - Z_V$

Minimization of *E* with respect to the asymmetry partition: analogous to coupled capacitors, $q_X = N_X - Z_X$, $E_X = E_X^0 + q_X^2/2C_X$, with the result $E = E^0 + \frac{q^2}{2C} = E^0 + \frac{(N-Z)^2}{\frac{A}{d_Y^1} + \frac{A^{2/3}}{a_Y^5}}$

Modified Binding Formula

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + \frac{a_A^V}{1 + A^{-1/3} a_A^V / a_A^S} \frac{(N-Z)^2}{A} \frac{a_A(A)}{A}$$

Regular formula for $a_A^V/a_A^S = 0$ - i.e. surface not accepting the asymmetry excess ($a_A^S = \infty$) - or for $A \to \infty$. Modified formula: weakening of the symmetry term for low *A*.

Whether one can replace $a_A(A)$ by a_A^V for large *A* depends on the ratio a_A^V/a_A^S .

The ratio may be determined from surface asymmetry excess, as surface-to-volume asymmetry ratio:

$$\frac{N_S - Z_S}{N_V - Z_V} = \frac{C_S}{C_V} = \frac{A^{2/3}/a_A^S}{A/a_A^V} = A^{-1/3} a_A^V/a_A^S$$

Asymmetry Skins

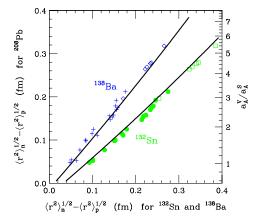
Measuring n-p skin sizes difficult: 2 different probes needed. E.g. electrons + protons, $\pi^+ + \pi^-$, protons + neutrons Issues: 1. Data in terms of difference of n and p rms radii. Conversion straightforward, if diffuseness similar for n and p. 2. For heavy nuclei, Coulomb competes with symmetry energy, pushing protons out to surface and polarizing interior. \Rightarrow minimize sum of 3 energies w/respect to asymmetry: $E = E_V + E_S + E_C$ $E_C = \frac{e^2}{4\pi\epsilon_0} \frac{1}{R} \left(\frac{3}{5}Z_V^2 + Z_V Z_S + \frac{1}{2}Z_S^2\right)$

From the modified minimization, analytic difference of rms radii: $\frac{\langle r^2 \rangle_n^{1/2} - \langle r^2 \rangle_p^{1/2}}{\langle r^2 \rangle^{1/2}} = \frac{A}{6NZ} \frac{N-Z}{1+A^{1/3} a_A^S/a_A^V} - \frac{a_C}{168a_A^V} \frac{A^{5/3}}{N} \frac{\frac{10}{3} + A^{1/3} a_A^S/a_A^V}{1+A^{1/3} a_A^S/a_A^V}$ symmetry energy only Coulomb correction

ヘロト ヘ戸ト ヘヨト ヘヨト

Testing Macroscopic Theory

Comparison of the analytic formula (lines) with a multitude of nonrelativistic and relativistic mean-field calculations by Typel and Brown PRC64(01)027302 (symbols)

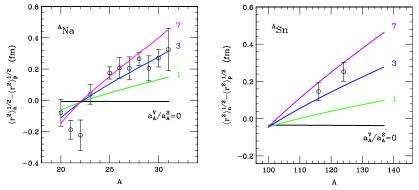


Accuracy, in reproducing microscopic theory, of \sim 0.01 fm ?! Other tests: Thomas-Fermi

 \Rightarrow next data

Comparison to Skin Data

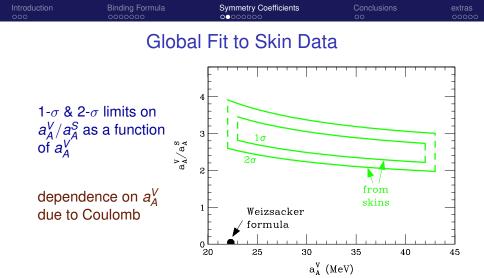
Systematic of n-p skin sizes for different Na isotopes by Suzuki et al., PRL75(95)3241 + other data



difference between the rms n and p radii vs A

$$a_A^V/a_A^S\sim 3$$

S NSCL



As $A^{-1/3} a_A^V / a_A^S$ never small, symmetry term <u>not</u> expandable; Bethe-Weizsäcker not acceptable at the macroscopic level.

(A) (E) (A) (E)

Charge Invariance

Conclusions on symmetry term details, following mass-formula fits, are interrelated with conclusions on other terms: isospin-dependent Coulomb, Wigner & pairing + isospin-independent, due to (N - Z)/A - A correlations along line of stability (PD NPA727(03)233)!

Best would be to study the symmetry term in isolation from the rest of mass formula! Absurd?!

Charge invariance comes to rescue: lowest nuclear states characterized by different isospin values (T, T_z) , $T_z = (Z - N)/2$. Nuclear energy scalar in isospin space:

$$E_{A} = a_{A}(A) \frac{(N-Z)^{2}}{A} = 4 a_{A}(A) \frac{T_{z}^{2}}{A}$$
$$\rightarrow E_{A} = 4 a_{A}(A) \frac{T^{2}}{A} = 4 a_{A}(A) \frac{T(T+1)}{A}$$

→ E → < E →</p>

< < >> < </>

Charge Invariance

Conclusions on symmetry term details, following mass-formula fits, are interrelated with conclusions on other terms: isospin-dependent Coulomb, Wigner & pairing + isospin-independent, due to (N - Z)/A - A correlations along line of stability (PD NPA727(03)233)!

Best would be to study the symmetry term in isolation from the rest of mass formula! Absurd?!

Charge invariance comes to rescue: lowest nuclear states characterized by different isospin values (T, T_z) , $T_z = (Z - N)/2$. Nuclear energy scalar in isospin space:

$$E_{A} = a_{A}(A) \frac{(N-Z)^{2}}{A} = 4 a_{A}(A) \frac{T_{Z}^{2}}{A}$$
$$\rightarrow E_{A} = 4 a_{A}(A) \frac{T^{2}}{A} = 4 a_{A}(A) \frac{T(T+1)}{A}$$

→ E → < E →</p>

< < >> < </>

Charge Invariance

Conclusions on symmetry term details, following mass-formula fits, are interrelated with conclusions on other terms: isospin-dependent Coulomb, Wigner & pairing + isospin-independent, due to (N - Z)/A - A correlations along line of stability (PD NPA727(03)233)!

Best would be to study the symmetry term in isolation from the rest of mass formula! Absurd?!

Charge invariance comes to rescue: lowest nuclear states characterized by different isospin values (T, T_z) , $T_z = (Z - N)/2$. Nuclear energy scalar in isospin space:

$$E_A = a_A(A) \frac{(N-Z)^2}{A} = 4 a_A(A) \frac{T_z^2}{A}$$
$$\rightarrow E_A = 4 a_A(A) \frac{T^2}{A} = 4 a_A(A) \frac{T(T+1)}{A}$$

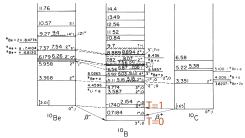
A-Dependent Symmetry Energy from IAS Data $\rightarrow E_A = 4 a_A(A) \frac{T(T+1)}{A}$

In the ground state T takes on the lowest possible value

 $T = |T_z| = |N - Z|/2$. Through '+1' most of the Wigner term absorbed.

Formula generalized to the lowest state of a given T. Pairing term contributes depending on evenness of T.

?Lowest state of a given T: isobaric analogue state (IAS) of some neighboring nucleus ground-state.



Study of changes in the symmetry term possible nucleus by nucleus

イロト イポト イヨト イヨ

IAS Data Analysis

In the same nucleus, when pairing drops out:

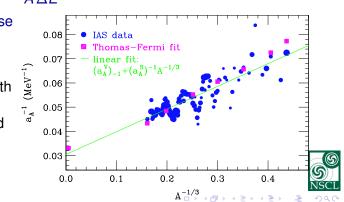
$$E_2(T_2) - E_1(T_1) = \frac{4 a_A}{A} \big\{ T_2(T_2 + 1) - T_1(T_1 + 1) \big\}$$

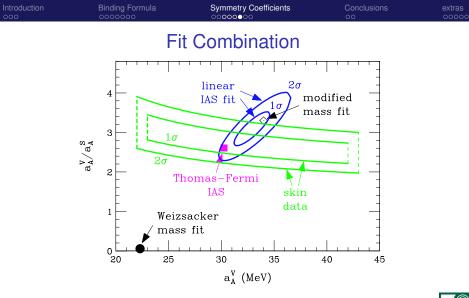
$$a_A^{-1}(A) = rac{4 \, \Delta T^2}{A \, \Delta E} \qquad \stackrel{?}{=} (a_A^V)^{-1} + (a_A^S)^{-1} \, A^{-1/3}$$

extracted inverse symmetry coefficient

available IAS with largest energy differences used

Antony *et al.* ADNDT66(97)1





Conclusions: $30.0 \text{ MeV} \lesssim a_A^V \lesssim 32.5 \text{ MeV}$, $2.6 \lesssim a_A^V / a_A^S \lesssim 3.0$ next: Symmetry-coeff ratio constraints low- ρ dependence of E_A .

Symmetry Energy

Microscopic Background In TF approx with $E = E_0 + \int d^3r \rho S(\rho) \left(\frac{\rho_n - \rho_p}{\rho}\right)^2$, where *S* -

symmetry energy ($S(
ho_0) = a_A^V$), Gibbs prescription for

semiinfinite matter yields:

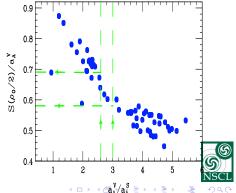
 $\Rightarrow a_A^V/a_A^S$ probes shape of $S(\rho)!$

For
$$S(\rho) \equiv a_A^V, a_A^V/a_A^S = 0!$$

Surface capacitance emerges, because *S* drops with ρ .

From 2.6 $\lesssim a_A^V/a_A^s \lesssim 3.0$ for mean-field structure calcs (Furnstahl, NPA706(02)85 symbols), we deduce symmetry energy reduction at $\rho_0/2$: $0.58 \leq S(\rho_0/2)/a_A^V \leq 0.69$

$$\frac{a_A^V}{a_A^S} = \frac{3}{r_0} \int dr \, \frac{\rho(r)}{\rho_0} \left[\frac{S(\rho_0)}{S(\rho(r))} - 1 \right]$$



Further Consequences

In $S(\rho) \simeq a_A^V(\rho/\rho_0)^{\gamma}$: $\gamma = (0.54 - 0.77)$.

Neutron Stars: Pressure estimate from $S(\rho)$ + Lattimer-Prakash scaling, $RP^{1/4} \simeq \text{const}$, vields 11.5 km $\lesssim R \lesssim$ 13.5 km for an 1.4 M_{\odot} star.

Density dependence too weak for the direct Urca cooling.

Mass Formula Performance: Fit residuals for light asymmetric nuclei, when either following the Bethe -E_{th} (MeV) -Weizsäcker formula (open symbols) or the modified formula with exp_ -10 $a_{\Delta}^{V}/a_{\Delta}^{S} = 2.8$ imposed °°° ° -15 |N-Z|/A>0.2 (closed), i.e. the same -20parameter No.

20

30

• • • A • 🚌

50

70

Conclusions

- Macroscopic consistency puts surface symmetry energy into binding formula, with volume and surface symmetry energies combining as energies of coupled capacitors.
- Extension implies surface asymmetry skins and weakening of the symmetry term for light nuclei.
- Skins restrict ratio of symmetry coefficients; charge invariance allows to study symmetry term in one nucleus.
- Skin/IAS fits: $30.0 \text{ MeV} \lesssim a_A^V \lesssim 32.5 \text{ MeV}$ and $2.6 \lesssim a_A^V / a_A^S \lesssim 3.0$.
- Surface symmetry energy emerges due to weakening of symmetry energy with density. a^V_A/a^S_A ratio places S within (0.58 - 0.69)a^V_A at ρ₀/2. Consequences for neutron stars.
- Description of giant dipole resonances improves with inclusion of surface symmetry energy. Resonances more of a GT type for light nuclei and of an SJ type for heavy.
- Next: Shell-correction for IAS

A B > 4
 B > 4
 B

Questions for RIA

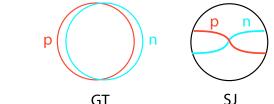
- Skin-size vs asymmetry (high-T low-A data)
- High-T IAS
- Dependence on asymmetry for central-collision observables:
 - collective flow
 - yields (S(ρ > ρ₀))
 - stopping
 - asymmetry transport
 - low-velocity correlations

→ E > < E</p>

Asymmetry Oscillations

Movement of neutrons vs protons - giant resonances visible in excitation cross sections

2 classical models of the simplest giant dipole resonance



Goldhaber-Teller (GT): n & p distributions oscillate against each other as rigid entities:

$$\mathsf{E}_{GDR}=\hbar\Omega\propto\sqrt{\mathsf{A}^{2/3}/\mathsf{A}}=\mathsf{A}^{-1/6}$$

Steinwedel-Jensen (SJ): Standing wave of n-p in the interior with vanishing flux at the surface

$$E_{GDR}=\hbar c_a/\lambda \propto A^{-1/3}$$

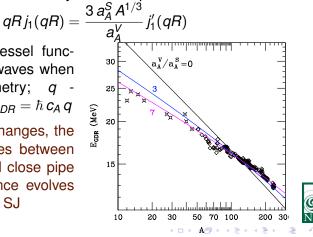
(GDR)

GDR Evolution with Mass GT model: $a_A^V \rightarrow \infty$ SJ model: $a_A^S \rightarrow \infty$

Realistic model: SJ but asymmetry flux may flow in and out of the surface... The boundary condition produces:

 j_1 - spherical Bessel function, typical for waves when spherical symmetry; q wavenumber, $E_{GDB} = \hbar c_A q$

As $a_A^S A^{1/3}/a_A^V$ changes, the condition changes between that of open and close pipe and the resonance evolves between GT and SJ

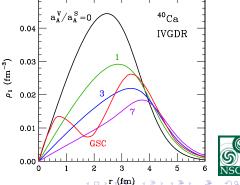


Transition Densities

Local Amplitude \equiv Transition Density

$$\rho_{1}(r) = \frac{D_{V}}{\rho_{0}} j_{1}(qr) \left[\rho(r) - \frac{a_{A}^{V}}{3 a_{A}^{S} A^{1/3}} r \frac{d\rho}{dr} \right]$$

Compared to microscopic calculations (Khamerdzhiev *et al.*, NPA624(97)328) GSC, including 2p-2h excitations and ground-state correlations



ntroduction	Binding Formula	Symmetry Coefficients	Conclusions	extras ooo●o
	Liqui	id Droplet Mode	I	
		yers & Swiatecki '69)		
E =	$\left(-a_1+J\overline{\delta}^2-\frac{1}{2}I\right)$	$K\overline{\epsilon}^2+rac{1}{2}M\overline{\delta}^4 ight)A$		
-	$+\left(a_2+Q\tau^2+a_3\right)$	$_{3}A^{-1/3})A^{2/3}+c_{1}\frac{Z}{A^{1}}$	$\frac{r^2}{\sqrt{3}} \left(1 + \frac{1}{2} \tau A^{-1} \right)$	1/3
-	$-c_2 Z^2 A^{1/3} - c_3 + c_3$	$rac{Z^2}{A} - c_4 rac{Z^{4/3}}{A^{1/3}}$		

where

$$\overline{\epsilon} = \frac{1}{K} \left(-2a_2 A^{-1/3} + L \overline{\delta}^2 + c_1 \frac{Z^2}{A^{4/3}} \right) , \qquad \tau = \frac{3}{2} \frac{J}{Q} \left(\overline{\delta} + \overline{\delta}_s \right)$$

$$\overline{\delta} = \frac{I + \frac{3}{8} \frac{c_1}{Q} \frac{Z^2}{A^{5/3}}}{1 + \frac{9}{4} \frac{J}{Q} A^{-1/3}}, \qquad \overline{\delta}_s = -\frac{c_1}{12J} \frac{Z}{A^{1/3}}, \qquad I = \frac{N - Z}{N + Z}$$

 $Q = H/(1 - \frac{2}{3}P/J)$. Expansion in asymmetry yields results consistent with current, but approach more complex.

Liquid Drop Model

The current formula:

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_A^V \frac{(N-Z)^2}{A} \frac{1}{1 + \frac{a_A^V}{a_A^S} A^{-1/3}}$$

Liquid drop model [LDM] (Myers & Swiatecki '66)

$$E = -a_V \left(1 - \kappa_V l^2\right) A + a_S \left(1 - \kappa_S l^2\right) A^{2/3} + a_C \frac{Z^2}{A^{1/3}} - a_4 \frac{Z^2}{A}$$

with I = (N - Z)/A. LDM corresponds to the expansion in the current formula:

$$\frac{1}{\frac{A}{a_A^V} + \frac{A^{2/3}}{a_A^S}} \simeq \frac{a_A^V}{A} \left(1 - \frac{a_A^V}{a_A^S} A^{-1/3} \right)$$

But that expansion only accurate for $A \gtrsim 1000$, i.e. never!

Symmetry Energy