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Harmonic-Oscillator-Based Effective Theory

• Review: Bloch-Horowitz solutions for effective interactions and
operators

• Connections with contact-gradient expansions
� initial work with Luu on the running of the coefficients
� re-examination of individual matrix elements – deeply bound
vs. valence orbitals

• Harmonic oscillator-based effective theory
� as expansion around q ∼ 1/b: removing operator mixing

� T resummation and contract-gradient expansion
� implications for potentials, b, halo nuclei...

• Fitting contact-gradient expansions to low-energy nuclear data
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• Review: Bloch-Horowitz generates Hermitian but
energy-dependent effective interactions and operators. We
explore a bare H of the form

H =
1
2

A

∑
i, j=1

(Ti j +Vi j)

where V represents a two-body potential like av18 and T is the
two-body (relative) kinetic energy

He f f = H+H
1

E−QSMH
QSMH

He f f |ΨSM〉 = E|ΨSM〉 |ΨSM〉 = (1−QSM)|Ψ〉

• Solved self-consistently: E is the exact eigenvalue
• PSM = 1−QSM is defined by ΛSM and b
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• ΛSM: retention of a complete set of ΛSM h̄ω excitations produces
a separable space and a translation-invariant effective
interaction

• Results completely independent of parameter choices if the
effective theory is executed properly

• P-space wave function is the restriction of the exact wave
function to P: wave function evolves simply

• Thus a nontrivial normalization that approaches 1 as ΛSM → ∞

• Calculations done both by explicitly summing over Q (140 h̄ω,
D; 70 h̄ω, 3He/3H: C.-L. Song) and by a momentum-space
integration over all excitations (T. Luu)

• “Test data” for examining effective interaction, operator behavior
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• Evolution of 3He av18 SM wave function with ΛSM

amplitude

state 0h̄ω 2h̄ω 4h̄ω 6h̄ω 8 h̄ω exact

(31.1%) (57.4%) (70.0%) (79.8%) (85.5%) (100%)

| 0,1〉 0.5579 0.5579 0.5579 0.5579 0.5579 0.5579

| 2,1〉 0.0000 0.0463 0.0461 0.0462 0.0462 0.0463

| 2,2〉 0.0000 -0.4825 -0.4824 -0.4824 -0.4824 -0.4826

| 2,3〉 0.0000 0.0073 0.0073 0.0073 0.0073 0.0073

| 4,1〉 0.0000 0.0000 -0.0204 -0.0204 -0.0204 -0.0205

| 4,2〉 0.0000 0.0000 0.1127 0.1127 0.1127 0.1129

| 4,3〉 0.0000 0.0000 -0.0419 -0.0420 -0.0421 -0.0423
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• Evolution of effective interaction m.e.s with ΛSM

2h̄ω 4h̄ω 6h̄ω 8 h̄ω

〈0,1 | He f f | 2,1〉 -4.874 -3.165 -0.449 1.279

〈0,1 | He f f | 2,5〉 -0.897 -1.590 -1.893 -2.208

〈2,1 | He f f | 2,2〉 6.548 -2.534 -4.144 -5.060
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• Evolution of observables: ground-state energies do not change
even with large changes in b (to accuracy of 1 or 10 keV, for d
or 3He/3H)

• Similarly, effective operators are defined

Ôe f f = (1+HQ
1

Ef −HQ
)Ô(1+

1
Ei−QH

QH)

and must be evaluated between “SM” wave functions properly
normed

1= 〈Ψi|Ψi〉 = 〈Ψ‘SM
i |1̂e f f |ΨSM

i 〉 (1)

(also for |ΨSM
f 〉)
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• This work was intended as a check against a direct ET
treatment of interactions and operators (our goal): began to
look at this in 1999 (WH and Luu)

• Wrote down the most general nonlocal interactions of the
contact-gradient form, e.g., the s-wave momentum expansion

LO : assLOδ (r)

NLO : assNLO(ΛSM,b)(
←−
∇
2
δ (r)+δ (r)

−→
∇
2
)

NNLO : ass,22NNLO(ΛSM,b)
←−
∇
2
δ (r)

−→
∇
2
+ass,40NNLO(ΛSM,b)(

←−
∇
4
δ (r)+δ (r)

−→
∇
4
)

• Encountered odd running of couplings, associated with
nonperturbative effects of T
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• QSM defined by ΛSMh̄ω (translational invariance)

• This is an energy cut, not a momentum cut

• 〈q〉1s ∼ 1/b: expansion about an intermediate scale
• Combinations of high-energy configurations can be soft
• The competition between V and T depends on the nuclear
binding energy relative to the first open channel, typically ∼ 10
MeV – a sharp variation not represented in HO SM

• This physics is generally many-body
• Luu and WH studied, initially, the non-perturbative long-range
wave function

• H.O. has long- and short-range problems, plane-wave
contact-gradient expansion can account for only the later



1.10



1.11

• Re-sum QT to all orders in He f f = H+H 1
E−QHQH

edge states ↔ deep states

〈α |T +TQ
1

E−QT
QT |β 〉+ ↔ 〈α |T |β 〉+

〈α | E
E−TQ

V
E

E−QT
|β 〉+ ↔ 〈α |V |β 〉+

〈α | E
E−TQ

V
1

E−QH
QV

E
E−QT

|β 〉 ↔ 〈α |V 1
E−QH

QV |β 〉

• Deep states ∼ plane-wave states: P↔ Q uncoupled by T

• Edge states maximally couple: T ladder operator
• QT summation→ local operators acts on external legs

• CM-preserving new operators, but suggestive of a basis
transformation too
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• That is, this can be rewritten

〈α |He f f |β 〉 = 〈α |T |β̃ 〉+ 〈α̃|V +V
1

E−QH
QV |β̃ 〉

where

|α̃〉 =
E

E−QT
|α〉

• For all nonedge states, |α̃〉 = |α〉
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• Deuterium g.s. convergence with a bare interaction!
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• The general case where two-body length scale not connected
with nuclear size explored in A=3

• Q-space interaction decomposed into iterated two-body Fadeev
bubbles (two-body ladders)

• these summed in momentum space to all orders in V

• QT summation again carried out in closed form to all orders,
forming the three-body |α̃〉

• He f f again converged as a perturbation in two-body ladders
(even though published work did not do this optimally)

• If this works in three-body case, should work in general (if done
properly)

• Contradicts old lore from early 1970s
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HOBET revisited: the old problem illustrated more clearly

• HOBET: are there simple, accurate contact-gradient
expansions in HO-based effective theory?

• If so, what is their structure, how can they be determined?
• Edge -deep states⇒ compare behavior of 〈α |He f f |β 〉

� explore simple example, deuteron with ΛSM = 8

� move down in Q-space from infinity to Λ≥ ΛSM in steps

� represent physics above Λ by aLO, aNLO, aNNLO..., fit to av18
He f f m.e.s for deep(est) states

� do LO, NLO, NNLO interactions improve systematically?
� on reaching Λ = ΛSM, does an accurate H+HNNLO

e f f exist?
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Step #1 in HOBET formulation: recast as expansion in 1/b

• Standard EFT approaches are expansions around�k = 0

−→
∇
n
exp i�k ·�r = 0,n= 1,2, ....

• By analogy demand in HOBET
−→
∇
n
ψ1s(b) = 0,n= 1,2, ...

• These leads to the HOBET form of EFT operators, e.g.,

assLO(Λ,b)er
2/2δ (r)er

2/2

assNLO(Λ,b)er
2/2(

←−
∇
2
δ (r)+δ (r)

−→
∇
2
)er

2/2

ass,22NNLO(Λ,b)er
2/2←−∇ 2

δ (r)
−→
∇
2
er
2/2+ass,40NNLOe

r2/2(Λ,b)(
←−
∇
4
δ (r)+δ (r)

−→
∇
4
)er

2/2
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• Acts on polynomials↔ short-range behavior

• Removes all operator mixing: e.g., aLO fixed in LO to
n= 1↔ n= 1, not affected by higher orders

• The expansion is in nodal quantum numbers, e.g.,

−→
∇
2 ∼ (n−1) −→

∇
4 ∼ (n−1)(n−2)

so that matrix elements become trivial to evaluate to any order

• Leading order in n contribution agrees with plane-wave result
(plane wave results recovered as b→ ∞)

• Operator coefficients are a generalization of Talmi integrals

e.g.,ass,22NNLO ∼
∫ ∞

0

∫ ∞

0
e−r

2
1 r21V (r1,r2)r22e

−r22 r21r
2
2dr1dr2
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Step #2: resum QT and evaluate consequences for interaction

• Recall that

edge states ↔ deep states

〈α |T +TQ
1

E−QT
QT |β 〉+ ↔ 〈α |T |β 〉+

〈α | E
E−TQ

V
E

E−QT
|β 〉+ ↔ 〈α |V |β 〉+

〈α | E
E−TQ

V
1

E−QH
QV

E
E−QT

|β 〉 ↔ 〈α |V 1
E−QH

QV |β 〉

• Summations over QT easily performed: raising/lowering
operator

• Leads to a series of continued fractions g̃i(2E/h̄ω,{αi},{βi}),
where αi = (2n+2i+ l−1/2)/2, βi =

√
(n+ i)(n+ i+ l+1/2)/2
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• For any operator O (O = V , V 1
E−QV QV , etc.)

〈n′l′| E
E−TQ

O
E

E−QT
|nl〉 = ∑

i, j=0
g̃ j(n′, l′)g̃i(n, l)〈n′ + j l|O|n+ i l〉

• Thus if VGV ↔ aNL,aNLO, ..., one finds an analytic
renormalization governed by E/h̄ω, e.g.,

aLO → a′LO = aLO× ∑
i, j=0

g̃ j(n′, l′)g̃i(n, l)

[
Γ(n′ + j+1/2)Γ(n+ i+1/2)

Γ(n′ +1/2)Γ(n+1/2)

]1/2 [ (n′ −1)!(n−1)!
(n′ + j−1)!(n+ i−1)!

]1/2

• No new parameters have been introduced
• Can be generalized for A=3,4,5,...
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• This is a general result for the shell model, a consequence of
the strong P−Q coupling driven by QT

• Plane-wave (e.g., Kuo-Brown g-matrix, V-low-k): T diagonal, so
VGV ↔ deep states: similar renormalization required

• Very physical: in extreme-halo-nucleus limit, a correct HOBET
allows the valence nucleon to decouple from V

• Isolates and evaluates the entire Bloch-Horowitz energy
dependence has been identified: VGV ∼ energy-independent

• With Egs ∼ few-10 MeV, very sensitive to excited-state energies:
a′LO/aLO ∼ 0.25−0.50 at 2.22 MeV

• In Lee-Suzuki beyond A=3?
� if may be that this explains the “drifting” of b in no-core shell
model
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Summary: Formulating HOBET and relating it to the SM

• The HO SM’s energy-based Q leads to high-momentum P−Q

coupling responsible for nonperturbative behavior in two-body G

• These effects can be removed by a resummation of QT
• The same effects confuse an association of the short-range
operator VGV with the standard plane-wave contact-gradient
expansion

• This can be addressed by a redefining of the contact-gradient
expansion to remove operator mixing

� VGV then can be isolated in the deep SM states

� for a system with enough bound states, the coefficients of the
contract-gradient expansion could be fully determined -
removing the hard core
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• From the SM perspective (true HO states) this instructs one to
renormalize the contact-gradient expansion in a defined way for
edge states

� generic result, e.g., required for V − low− k

• Physics governed by G0 = 1
E− 1

2M (k̇21+...+k̇2A−1)

� very physical: extended Jacobi coordinate for “halo” states
� effectively isolates all E-dependence in BH
� has implications for Lee-Suzuki done at cluster level: the
extended Jacobi coordinate is generally not present
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• Discussion done from SM viewpoint; from ET viewpoint,
corresponds to the choice of a new P-space, soft and
CM-invariant

P0 =∑
P0

|n〉〈n| → P′(E) =∑
P′0

|ñ〉〈ñ|

normalized so the the {|ñ〉 } basis remains orthonormal

|ñ〉 =
1

E−Q0T |n〉√
〈n| 1

E−TQ0
1

E−Q0T |n〉

• P′ is asymptotically correct

• A well-behaved He f f = H+H 1
E−Q′HQ

′H
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• Intriguing question: analytically continuing into continuum
� Would allow one to go directly from scattering data to the
HOBET appropriate for a given ΛSM, b

� e.g., for deuteron, all we can do now, independent of av18, is
to determine aLO

� with av18, our computed VGV matrix elements “encoded” NN
phase shifts in the m.e.’s we studied

� can we avoid all of this work?


