Harmonic-Oscillator-Based Effective Theory

- Review: Bloch-Horowitz solutions for effective interactions and operators
- Connections with contact-gradient expansions
\diamond initial work with Luu on the running of the coefficients
\diamond re-examination of individual matrix elements - deeply bound vs. valence orbitals
- Harmonic oscillator-based effective theory
\diamond as expansion around $\mathrm{q} \sim 1 / \mathrm{b}$: removing operator mixing
\diamond T resummation and contract-gradient expansion
\diamond implications for potentials, b, halo nuclei...
- Fitting contact-gradient expansions to low-energy nuclear data
- Review: Bloch-Horowitz generates Hermitian but energy-dependent effective interactions and operators. We explore a bare H of the form

$$
H=\frac{1}{2} \sum_{i, j=1}^{A}\left(T_{i j}+V_{i j}\right)
$$

where V represents a two-body potential like $a v 18$ and T is the two-body (relative) kinetic energy

$$
\begin{gathered}
H^{e f f}=H+H \frac{1}{E-Q_{S M} H} Q_{S M} H \\
H^{e f f}\left|\Psi_{S M}\right\rangle=E\left|\Psi_{S M}\right\rangle \quad\left|\Psi_{S M}\right\rangle=\left(1-Q_{S M}\right)|\Psi\rangle
\end{gathered}
$$

- Solved self-consistently: E is the exact eigenvalue
- $P_{S M}=1-Q_{S M}$ is defined by $\Lambda_{S M}$ and b
- $\Lambda_{S M}$: retention of a complete set of $\Lambda_{S M} \hbar \omega$ excitations produces a separable space and a translation-invariant effective interaction
- Results completely independent of parameter choices if the effective theory is executed properly
P-space wave function is the restriction of the exact wave function to P : wave function evolves simply

Thus a nontrivial normalization that approaches 1 as $\Lambda_{S M} \rightarrow \infty$

- Calculations done both by explicitly summing over Q ($140 \hbar \omega$, D; $70 \hbar \omega,{ }^{3} \mathrm{He} /{ }^{3} \mathrm{H}$: C.-L. Song) and by a momentum-space integration over all excitations (T. Luu)
- "Test data" for examining effective interaction, operator behavior

Evolution of ${ }^{3} \mathrm{He} a v 18 \mathrm{SM}$ wave function with $\Lambda_{S M}$

state	amplitude					
	$0 \hbar \omega$	$2 \hbar \omega$	$4 \hbar \omega$	$6 \hbar \omega$	$8 \hbar \omega$	exact
	(31.1%)	(57.4%)	(70.0%)	(79.8%)	(85.5%)	(100%)
$\|0,1\rangle$	0.5579	0.5579	0.5579	0.5579	0.5579	0.5579
$\|2,1\rangle$	0.0000	0.0463	0.0461	0.0462	0.0462	0.0463
$\|2,2\rangle$	0.0000	-0.4825	-0.4824	-0.4824	-0.4824	-0.4826
$\|2,3\rangle$	0.0000	0.0073	0.0073	0.0073	0.0073	0.0073
$\|4,1\rangle$	0.0000	0.0000	-0.0204	-0.0204	-0.0204	-0.0205
$\|4,2\rangle$	0.0000	0.0000	0.1127	0.1127	0.1127	0.1129
$\|4,3\rangle$	0.0000	0.0000	-0.0419	-0.0420	-0.0421	-0.0423

Evolution of effective interaction m.e.s with $\Lambda_{S M}$

	$2 \hbar \omega$	$4 \hbar \omega$	$6 \hbar \omega$	$8 \hbar \omega$
$\langle 0,1\| H^{\text {eff }}\|2,1\rangle$	-4.874	-3.165	-0.449	1.279
$\langle 0,1\| H^{\text {eff }}\|2,5\rangle$	-0.897	-1.590	-1.893	-2.208
$\langle 2,1\| H^{\text {eff }}\|2,2\rangle$	6.548	-2.534	-4.144	-5.060

Evolution of observables: ground-state energies do not change even with large changes in b (to accuracy of 1 or 10 keV , for d or ${ }^{3} \mathrm{He} /{ }^{3} \mathrm{H}$)

- Similarly, effective operators are defined

$$
\hat{O}^{e f f}=\left(1+H Q \frac{1}{E_{f}-H Q}\right) \hat{O}\left(1+\frac{1}{E_{i}-Q H} Q H\right)
$$

and must be evaluated between "SM" wave functions properly normed

$$
\begin{equation*}
1=\left\langle\Psi_{i} \mid \Psi_{i}\right\rangle=\left\langle\Psi_{i}^{〔 M}\right| \hat{\imath}^{e f f}\left|\Psi_{i}^{S M}\right\rangle \tag{1}
\end{equation*}
$$

(also for $\left|\Psi_{f}^{S M}\right\rangle$)

This work was intended as a check against a direct ET treatment of interactions and operators (our goal): began to look at this in 1999 (WH and Luu)

- Wrote down the most general nonlocal interactions of the contact-gradient form, e.g., the s-wave momentum expansion

$$
\begin{gathered}
\mathrm{LO}: a_{L O}^{s s} \delta(\mathbf{r}) \\
\mathrm{NLO}: a_{N L O}^{s s}\left(\Lambda_{S M}, b\right)\left(\overleftarrow{\nabla}^{2} \delta(\mathbf{r})+\delta(\mathbf{r}) \vec{\nabla}^{2}\right) \\
\mathrm{NNLO}: a_{N N L O}^{s s, 22}\left(\Lambda_{S M}, b\right) \overleftarrow{\nabla}^{2} \delta(\mathbf{r}) \vec{\nabla}^{2}+a_{N N L O}^{s, 40}\left(\Lambda_{S M}, b\right)\left(\overleftarrow{\nabla}^{4} \delta(\mathbf{r})+\delta(\mathbf{r}) \vec{\nabla}^{4}\right)
\end{gathered}
$$

Encountered odd running of couplings, associated with nonperturbative effects of T

- $Q_{S M}$ defined by $\Lambda_{S M} \hbar \omega$ (translational invariance)

This is an energy cut, not a momentum cut

- $\langle q\rangle_{1 s} \sim 1 / b$: expansion about an intermediate scale
- Combinations of high-energy configurations can be soft
- The competition between V and T depends on the nuclear binding energy relative to the first open channel, typically ~ 10 MeV - a sharp variation not represented in HO SM
- This physics is generally many-body
- Luu and WH studied, initially, the non-perturbative long-range wave function
- H.O. has long- and short-range problems, plane-wave contact-gradient expansion can account for only the later

- Re-sum $Q T$ to all orders in $H_{e f f}=H+H \frac{1}{E-Q H} Q H$

$$
\begin{array}{rll}
\text { edge states } & \leftrightarrow & \text { deep states } \\
\langle\alpha| T+T Q \frac{1}{E-Q T} Q T|\beta\rangle+ & \leftrightarrow & \langle\alpha| T|\beta\rangle+ \\
\langle\alpha| \frac{E}{E-T Q} V \frac{E}{E-Q T}|\beta\rangle+ & \leftrightarrow & \langle\alpha| V|\beta\rangle+ \\
\langle\alpha| \frac{E}{E-T Q} V \frac{1}{E-Q H} Q V \frac{E}{E-Q T}|\beta\rangle & \leftrightarrow & \langle\alpha| V \frac{1}{E-Q H} Q V|\beta\rangle
\end{array}
$$

- Deep states \sim plane-wave states: $P \leftrightarrow Q$ uncoupled by T
- Edge states maximally couple: T ladder operator
$Q T$ summation \rightarrow local operators acts on external legs
CM-preserving new operators, but suggestive of a basis transformation too

That is, this can be rewritten

$$
\langle\alpha| H^{e f f}|\beta\rangle=\langle\alpha| T|\tilde{\beta}\rangle+\langle\tilde{\alpha}| V+V \frac{1}{E-Q H} Q V|\tilde{\beta}\rangle
$$

where

$$
|\tilde{\alpha}\rangle=\frac{E}{E-Q T}|\alpha\rangle
$$

For all nonedge states, $|\tilde{\alpha}\rangle=|\alpha\rangle$

- Deuterium g.s. convergence with a bare interaction!

The general case where two-body length scale not connected with nuclear size explored in $\mathrm{A}=3$

- Q-space interaction decomposed into iterated two-body Fadeev bubbles (two-body ladders)
these summed in momentum space to all orders in V
$Q T$ summation again carried out in closed form to all orders, forming the three-body $|\tilde{\alpha}\rangle$
- $H_{e f f}$ again converged as a perturbation in two-body ladders (even though published work did not do this optimally)
- If this works in three-body case, should work in general (if done properly)
- Contradicts old lore from early 1970s

HOBET revisited: the old problem illustrated more clearly

- HOBET: are there simple, accurate contact-gradient expansions in HO-based effective theory?
- If so, what is their structure, how can they be determined?
- Edge -deep states \Rightarrow compare behavior of $\langle\alpha| H_{e f f}|\beta\rangle$
\diamond explore simple example, deuteron with $\Lambda_{S M}=8$
\diamond move down in Q-space from infinity to $\Lambda \geq \Lambda_{S M}$ in steps
\diamond represent physics above Λ by $a_{L O}, a_{N L O}, a_{N N L O} \ldots$, fit to $a v 18$ $H_{e f f}$ m.e.s for deep(est) states
\diamond do LO, NLO, NNLO interactions improve systematically?
\diamond on reaching $\Lambda=\Lambda_{S M}$, does an accurate $H+H_{e f f}^{N N L O}$ exist?

Step \#1 in HOBET formulation: recast as expansion in $1 / b$

- Standard EFT approaches are expansions around $\vec{k}=0$

$$
\vec{\nabla}^{n} \exp i \vec{k} \cdot \vec{r}=0, n=1,2, \ldots
$$

- By analogy demand in HOBET

$$
\vec{\nabla}^{n} \psi_{1 s}(b)=0, n=1,2, \ldots
$$

- These leads to the HOBET form of EFT operators, e.g.,

$$
\begin{gathered}
a_{L O}^{s s}(\Lambda, b) e^{r^{2} / 2} \delta(\mathbf{r}) e^{r^{2} / 2} \\
a_{N L O}^{s s}(\Lambda, b) e^{r^{2} / 2}\left(\overleftarrow{\nabla}^{2} \delta(\mathbf{r})+\delta(\mathbf{r}) \vec{\nabla}^{2}\right) e^{r^{2} / 2} \\
a_{N N L O}^{s s, 2}(\Lambda, b) e^{r^{2} / 2} \overleftarrow{\nabla}^{2} \delta(\mathbf{r}) \vec{\nabla}^{2} e^{r^{2} / 2}+a_{N N L O}^{s, 40} e^{r^{2} / 2}(\Lambda, b)\left(\overleftarrow{\nabla}^{4} \delta(\mathbf{r})+\delta(\mathbf{r}) \vec{\nabla}^{4}\right) e^{r^{2} / 2}
\end{gathered}
$$

Acts on polynomials \leftrightarrow short-range behavior

- Removes all operator mixing: e.g., $a_{L O}$ fixed in LO to $n=1 \leftrightarrow n=1$, not affected by higher orders

The expansion is in nodal quantum numbers, e.g.,

$$
\vec{\nabla}^{2} \sim(n-1) \quad \vec{\nabla}^{4} \sim(n-1)(n-2)
$$

so that matrix elements become trivial to evaluate to any order

- Leading order in n contribution agrees with plane-wave result (plane wave results recovered as $b \rightarrow \infty$)
- Operator coefficients are a generalization of Talmi integrals

$$
\text { e.g., } a_{N N L O}^{s s, 22} \sim \int_{0}^{\infty} \int_{0}^{\infty} e^{-r_{1}^{2}} r_{1}^{2} V\left(r_{1}, r_{2}\right) r_{2}^{2} e^{-r_{2}^{2}} r_{1}^{2} r_{2}^{2} d r_{1} d r_{2}
$$

Step \#2: resum $Q T$ and evaluate consequences for interaction

- Recall that

$$
\begin{array}{rll}
\text { edge states } & \leftrightarrow & \text { deep states } \\
\langle\alpha| T+T Q \frac{1}{E-Q T} Q T|\beta\rangle+ & \leftrightarrow & \langle\alpha| T|\beta\rangle+ \\
\langle\alpha| \frac{E}{E-T Q} V \frac{E}{E-Q T}|\beta\rangle+ & \leftrightarrow & \langle\alpha| V|\beta\rangle+ \\
\langle\alpha| \frac{E}{E-T Q} V \frac{1}{E-Q H} Q V \frac{E}{E-Q T}|\beta\rangle & \leftrightarrow & \langle\alpha| V \frac{1}{E-Q H} Q V|\beta\rangle
\end{array}
$$

- Summations over $Q T$ easily performed: raising/lowering operator
- Leads to a series of continued fractions $\tilde{g}_{i}\left(2 E / \hbar \omega,\left\{\alpha_{i}\right\},\left\{\beta_{i}\right\}\right)$, where $\alpha_{i}=(2 n+2 i+l-1 / 2) / 2, \beta_{i}=\sqrt{(n+i)(n+i+l+1 / 2)} / 2$
- For any operator $O\left(O=V, V \frac{1}{E-Q V} Q V\right.$, etc. $)$

$$
\left\langle n^{\prime} l^{\prime}\right| \frac{E}{E-T Q} O \frac{E}{E-Q T}|n l\rangle=\sum_{i, j=0} \tilde{g}_{j}\left(n^{\prime}, l^{\prime}\right) \tilde{g}_{i}(n, l)\left\langle n^{\prime}+j l\right| O|n+i l\rangle
$$

Thus if $V G V \leftrightarrow a_{N L}, a_{N L O}, \ldots$, one finds an analytic renormalization governed by $E / \hbar \omega$, e.g.,

$$
\begin{gathered}
a_{L O} \rightarrow a_{L O}^{\prime}=a_{L O} \times \sum_{i, j=0} \tilde{g}_{j}\left(n^{\prime}, l^{\prime}\right) \tilde{g}_{i}(n, l) \\
{\left[\frac{\Gamma\left(n^{\prime}+j+1 / 2\right) \Gamma(n+i+1 / 2)}{\Gamma\left(n^{\prime}+1 / 2\right) \Gamma(n+1 / 2)}\right]^{1 / 2}\left[\frac{\left(n^{\prime}-1\right)!(n-1)!}{\left(n^{\prime}+j-1\right)!(n+i-1)!}\right]^{1 / 2}}
\end{gathered}
$$

No new parameters have been introduced

- Can be generalized for $\mathrm{A}=3,4,5, \ldots$

This is a general result for the shell model, a consequence of the strong $P-Q$ coupling driven by $Q T$

- Plane-wave (e.g., Kuo-Brown g-matrix, V-low-k): T diagonal, so $V G V \leftrightarrow$ deep states: similar renormalization required
- Very physical: in extreme-halo-nucleus limit, a correct HOBET allows the valence nucleon to decouple from V
- Isolates and evaluates the entire Bloch-Horowitz energy dependence has been identified: $V G V \sim$ energy-independent

With $E_{g s} \sim$ few- 10 MeV , very sensitive to excited-state energies:
$a_{L O}^{\prime} / a_{L O} \sim 0.25-0.50$ at 2.22 MeV

- In Lee-Suzuki beyond $\mathrm{A}=3$?
\diamond if may be that this explains the "drifting" of b in no-core shell model

Summary: Formulating HOBET and relating it to the SM
The HO SM's energy-based Q leads to high-momentum $P-Q$ coupling responsible for nonperturbative behavior in two-body G
These effects can be removed by a resummation of $Q T$

- The same effects confuse an association of the short-range operator $V G V$ with the standard plane-wave contact-gradient expansion
- This can be addressed by a redefining of the contact-gradient expansion to remove operator mixing
$\diamond V G V$ then can be isolated in the deep SM states
\diamond for a system with enough bound states, the coefficients of the contract-gradient expansion could be fully determined removing the hard core
- From the SM perspective (true HO states) this instructs one to renormalize the contact-gradient expansion in a defined way for edge states
\diamond generic result, e.g., required for $V-l o w-k$
Physics governed by $G_{0}=\frac{1}{E-\frac{1}{2 M}\left(k_{1}^{2}+\ldots+\dot{k}_{A-1}^{2}\right)}$
\diamond very physical: extended Jacobi coordinate for "halo" states
\diamond effectively isolates all E-dependence in BH
\diamond has implications for Lee-Suzuki done at cluster level: the extended Jacobi coordinate is generally not present
- Discussion done from SM viewpoint; from ET viewpoint, corresponds to the choice of a new P-space, soft and CM-invariant

$$
P_{0}=\sum_{P_{0}}|n\rangle\langle n| \rightarrow P^{\prime}(E)=\sum_{P_{0}^{\prime}}|\tilde{n}\rangle\langle\tilde{n}|
$$

normalized so the the $\{|\tilde{n}\rangle\}$ basis remains orthonormal

$$
|\tilde{n}\rangle=\frac{\frac{1}{E-Q_{0} T}|n\rangle}{\sqrt{\langle n| \frac{1}{E-T Q_{0}} \frac{1}{E-Q_{0} T}|n\rangle}}
$$

P^{\prime} is asymptotically correct
A well-behaved $H_{e f f}=H+H \frac{1}{E-Q^{\prime} H} Q^{\prime} H$

- Intriguing question: analytically continuing into continuum
\diamond Would allow one to go directly from scattering data to the HOBET appropriate for a given $\Lambda_{S M}, b$
\diamond e.g., for deuteron, all we can do now, independent of $a v 18$, is to determine $a_{L O}$
\diamond with $a v 18$, our computed $V G V$ matrix elements "encoded" NN phase shifts in the m.e.'s we studied
\diamond can we avoid all of this work?

