Some challenges for Nuclear Density Functional Theory

Thomas Duguet

NSCL and Dept. of Physics and Astronomy, MSU, USA

RIA Theory Workshop, Argonne, April 4-7 2006

Outlook

I. A few words about DFT and selected challenges (non exhaustive)

II. First illustration: isovector properties and isovector effective mass

III. Second illustration: ill-defined Particle-Number Projected DFT

IV. Perspectives

Nuclear Structure and Low-Energy Reactions

From George Berstch and others...

Nuclear Density Functional Theory

- I. Goal = describe for all nuclei but the lightest
- & Ground-States properties: E, def., radii, s.p. energies (to some extent) drip-lines, pairing
- Low energy spectroscopy: I, vib., shape isomers, giant resonances
- **A** Probability transitions: γ , β ...
- **\clubsuit** EOS of (asymmetric) nuclear matter up to a few ρ_{sat}

II. Basic Ingredients

♣ Energy is a functional of one-body density (matrices) $\rho_{ji} = \langle \Phi | a_i^{\dagger} a_j | \Phi \rangle$ and $\kappa_{ij}^* = \langle \Phi | a_i^{\dagger} a_j^{\dagger} | \Phi \rangle$

$$\mathcal{E}\left[\rho,\kappa,\kappa^*\right] = \sum_{ij} t_{ij}\rho_{ji} + \sum_{ikjl} \left[w_{ikjl}^{\rho\rho} \rho_{ji}\rho_{lk} + w_{ikjl}^{\kappa\kappa} \kappa_{ik}^* \kappa_{jl} \right] \neq \frac{\langle \Phi | H | \Phi \rangle}{\langle \Phi | \Phi \rangle} = E$$

- $|\Phi\rangle$ is a symmetry breaking product state (HFB functional)
- Underlying mean-field generated by a Skyrme/Gogny functional
- A Pairing properties (n-n and p-p) generated by a specific part of the functional
- Direct extensions for excited states (cranking, QRPA)
- Projected-GCM DFT = Beyond mean-field extension to include long-range correlations
- Similar for Relativistic DFT

III. Recent milestones and limitations (for now...)

1995	Cranked DFT	$\mathcal{J}^{(2)}$, superdeformation, rotational alignment, Coriolis anti-pairing
2000	Global application of DFT	Mass fits: r.m.s. $\sigma \approx 0.7$ MeV \Leftrightarrow mic-mac models
2000	Spectroscopy by projected GCM	Shape mixing, collective states, Q_s , $M(E0)$ and $B(E2)$ values
2001	DFT at the limits of mass	Predictions for superheavy nuclei: E , lifetimes
2003	Time-dependent DFT	Heavy-ion reactions, low-energy strength functions
2004	Nuclear response in QRPA	Self-consistent QRPA, $dB_\lambda(\omega)/d\omega$ in exotic nuclei, eta decay
2004	DFT for fission	Systematics of static fission barriers
2005	Fission dynamics	Mass and kinetic energy distributions in TDGCM-GOA
2005	Correlations in GCM-DFT	Systematics of quadrupole correlations for even-even nuclei

 \checkmark Properties over the known mass table

- \star Predictive power in unknown regions \Longrightarrow Witek: "Property of asymptotic freedom of DFT"
- ★ More specific problems to be addressed but not less important

III. Selection of challenges and crucial inputs from RIA (\checkmark)

Improved phenomenology	\checkmark Improving single-particle spectra is crucial		
	\Rightarrow Incorrect spacings spoil low-energy spectroscopy		
	\Rightarrow RIA = particle/hole states around ⁷⁸ Ni		
	\checkmark Tensor force could help (see Jacek's talk on thursday)		
	\checkmark Data on superdeformed states, fission isomers/barriers of (exotic) nuclei		
	\checkmark Pairing: gradient versus density dependences (isovector, low-density)		
	\Rightarrow "All" functionals do the job between ^{104}Sn and ^{132}Sn		
	\Rightarrow RIA = masses up to $^{146/150}Sn$ or ^{81}Ni with δE = 50 keV		
	\Rightarrow RIA = reaction cross sections up to ^{85}Ni / $r_n - r_p$ = 0.5 fm		
Connection to underlying methods	♠ Skyrme/Gogny functionals do not offer enough freedom ★		
	\Rightarrow Need guidance beyond a fit on <i>existing</i> data		
	\blacklozenge Functional validated through well-defined benchmark ab-initio results \bigstar		
	Constructive framework from EFT (coherent 2-body/3-body)		
Grounding nuclear DFT	♠ No Hohenberg-Kohn theorem for projected-GCM DFT		
	\Rightarrow Ad-hoc prescription to go from HFB to projected-GCM		
	🌲 Ill-defined Particle-Number Projected DFT ★		

Constraining the isovector effective mass m_v^*

T. Lesinski, B. Cochet, K. Bennaceur, T. D. and J. Meyer

- I. Why ? Because m_s^* and m_v^* influence
- Masses and single-particle density of states
- Shell corrections in superheavy nuclei around the island of stability (N = 184, Z = 114/126)
- Static and dynamical correlations beyond the mean-field level (def., pairing, vibr./rot.)
- Heavy ion collisions observable to learn about the nuclear OES ; Li et al. (2004)

II. How ?

- $m_s^* \approx 0.8$) via the ISGQR in ²⁰⁸Pb ; Reinhard (1999) (consistent with BHF)
- \clubsuit Constraint on $m_v^*\,(\approx 0.7-0.9)$ via the IVGDR is not strong enough
- Ab-initio predictions $\Delta m^*_{n-p} = m^*_n m^*_p \ge 0 \ \Rightarrow \ m^*_s \ge m^*_v$ for $I = (\rho_n \rho_p)/\rho \ge 0$

BHF $\Delta m_{n-p}^*|_{I=1} \approx 0.22$ (with/without *NNN* force) ; Zuo et al. (1999)

DBHF $\Delta m_{n-p}^*|_{I=1} \approx 0.13$; Ma et al. (2004), van Dalen et al. (2005)

Consistent with the energy dependence of the Lane potential; Li (2004)

In DFT

I. Current situation

- \clubsuit SLyX forces adjusted on the PNM EOS have $\Delta m^*_{n-p} < 0$; Chabanat et al. (1995)
- ♣ SkM*/SIII which have an incorrect PNM EOS have the right splitting $\Delta m^*_{n-p} > 0!$
- Same with Gogny "old" D1S pamareterization versus new "FT65"; Girod, private comm.
- \clubsuit Relativistic DFT always predict $\Delta m^*_{n-p} < 0$; not trivial to correct for that

Improving global isovector quantities (OES/a_I) seems to deteriorate state-dependent ones (m_v^*)

II. Can we have it all?

A Parameterizations (f_3 , f_4 , f_5) with same fitting protocol (close to SLy5) but different m_v^*

♣ Two density terms $\propto \rho_0^{1/3}$; $\rho_0^{2/3}$ + no spin-isospin instablities for $\rho < 2\rho_{sat}$ and I = 0, 1

	$ ho_{sat}$	E/A_{sat}	K_{∞}	a_I	m^*	$\Delta m_{n-p}^* _{I=1}$
SkM* SkP	0.160 0.162	-15.770 -15.948	217 201	30 30	0.79 1.00	0.356 0.399
SLy5'	0.161	-15.987	230	32	0.70	-0.182
f3 f4	0.162 0.162	-16.029 -16.036	230 230	32 32	0.70 0.70	-0.284 0.170
f5	0.162	-16.035	230	32	0.70	0.001

Results and lessons

I. Global isovector properties

E/A

SNM/PNM EOS and a_I versus ab-initio predictions

♣ VCS calculations with NN/NNN forces ; {Akmal *et al.* (1998) for EOS Lagaris and Pandharipande (1981) for a_I

A Identical properties for (f_3, f_4, f_5) and as good as SLy5'

♣ Is it a good enough test of the quality of isovector properties of the functional ?

\clubsuit Potential energy per (S,T) channel in SNM versus ab-initio predictions

- **BHF** calculations with NN/NNN forces ; Baldo, private comm.
- (S,T) = (0,1); (1,0) could be better ; saturation mechanism is not reproduced
- ♣ (S,T) = (1,1); (0,0) are disastrous \Leftrightarrow density-independent *P*-wave term $(\propto \vec{k}' \cdot \vec{k})$
- **.** It mainly gets worse as $\Delta m_{n-p}^*|_{I=1}$ is improved !

 \star Overall EOS is one thing but good (S,T) properties require more \Rightarrow benchmark ab-initio results

II. Problems encountered

 \clubsuit Spin-isospin instability makes it difficult to \nearrow m^* to 0.8

 $m^* = 0.7 \Rightarrow$ difficult to lower m_v^* and get PNM OES \Rightarrow Two density terms $\propto \rho_0^{1/3}$; $\rho_0^{2/3}$

Finite-size isospin instability develops as
$$\begin{cases}
m_v^* \searrow \\
\Delta m_{n-p}^*
\end{cases} \quad \Leftrightarrow \begin{cases}
\rho_n \text{ and } \rho_p \text{ split in finite nuclei} \\
\text{Related to } C_1^{\nabla \rho} \left(\vec{\nabla} \rho_1 \right)^2 \text{ in the functional} \\
\text{Already the case of SkP}
\end{cases}$$

\clubsuit The latter is related to how the energy splits among the four (S,T) channels

	$\Delta m_{n-p}^* _{I=1}$	$C_1^{ abla ho}$
SkP	0.399	-35.0
SLy5'	-0.182	-16.7
f3	-0.284	-5.4
f4	0.170	-29.4
f5	0.001	-21.4

♣ For the Skyrme force $C_1^{\nabla \rho}$ is a decreasing function of $\Delta m^*_{n-p}|_{I=1}$

★ Need to be quantified in order to better control the fit/properties of the functional

III. Finite-size instabilities made quantitative : response function (RPA) in SNM

A Perturbation $Q^{(\alpha)}(\vec{q}) = \sum_{i} e^{i\vec{q}\cdot\vec{r}_i} \mathcal{O}_i^{(\alpha)}$ with $\mathcal{O}^{(ss)} = 1$; $\mathcal{O}^{(vs)} = \vec{\sigma}$; $\mathcal{O}^{(sv)} = \vec{\tau}$; $\mathcal{O}^{(vv)} = \vec{\sigma}\vec{\tau}$

♣ Poles of $\chi^{(\alpha)}(\omega,q) \Rightarrow \omega(q)$; $\omega(q) = 0$ at density $\rho_c \Leftrightarrow$ Instability of wavelength $\lambda = 2\pi/q$

♣ Spinodal instability for $\rho_0 \le \rho_c^{ss} \approx 0.1$ fm⁻¹ ⇒ matter is unstable / compression mode

- **\$** Spin-isospin instabilities (ρ_c^{vv}) are more "dangerous" at finite q than at q = 0
- \clubsuit At $q pprox 2.5 fm^{-1}
 ho_c^{sv} \searrow
 ho_{sat}$ as $\Delta m^*_{n-p} \nearrow$
- \star Functional is too constrained ; especially the density-independent *P*-wave term

T. D. and M. Bender

 $\checkmark\ensuremath{\mathsf{Typical}}$ of calculations performed so far

 $\checkmark {\sf Results}$ look very reasonable and converged

Problem with PNP-HFB method II

 \checkmark Divergence when a pair of states crosses λ , Anguiano et al. (2001)

✓ Offset in the PES before and after the crossing, *Dobaczewski et al. priv. comm.*

 \checkmark More dramatic consequences for VAP calculations

Problem with PNP-HFB method II

$$|\Psi^N
angle = rac{1}{2\pi} \int_0^{2\pi} d\varphi \, e^{-i\varphi N} \, |\Phi(\varphi)
angle$$

$$\mathcal{E}^{N}=\int_{0}^{2\pi}darphi rac{e^{-iarphi N}}{2\pi\,\mathcal{D}_{N}}\mathcal{E}\left[arphi
ight] \,\mathcal{I}[arphi]$$

PES: ¹⁸*O*

3D PNP-HFBLN (PAV) SLy4+ULB+Trans. Dens. 9/99 φ -integration points λ crosses $\nu d_{5/2}$ orbits

Problem with PNP-HFB method II

 \checkmark Divergence when a pair of states crosses λ , Anguiano et al. (2001)

✓ Offset in the PES before and after the crossing, *Dobaczewski et al. priv. comm.*

 \checkmark More dramatic consequences for VAP calculations

Substracting the HFB energy = gain from projection

Origin: self-interaction and self-pairing in DFT

I. Self-interaction

A single nucleon in a state φ_{μ} cannot interact with itself \checkmark Approximate functionals are usually not self-interaction free \checkmark Well known issue in Kohn-Sham DFT, *Perdew and Zunger (1981)* \checkmark Violation of the Pauli principle at the two-body level \checkmark Exists in Nuclear DFT (Skyrme, Gogny, RMF) but has never been addressed

II.

Origin: self-interaction and self-pairing in DFT

I. Self-interaction

A single nucleon in a state φ_{μ} cannot interact with itself \checkmark Approximate functionals are usually not self-interaction free \checkmark Well known issue in Kohn-Sham DFT, *Perdew and Zunger (1981)* \checkmark Violation of the Pauli principle at the two-body level \checkmark Exists in Nuclear DFT (Skyrme, Gogny, RMF) but has never been addressed

II. Self-pairing

Two fermions in a pair of conjugated states $(\varphi_{\mu}, \varphi_{\overline{\mu}})$ cannot get additional binding through a pairing process by scattering onto themselves

 \checkmark Exists at the level of HFB \Rightarrow spurious contributions to the energy

 \checkmark Pair additive problem

Both are responsible for the dramatic problems at the level of PNP-HFB

Spurious contribution to \mathcal{E}^N in realistic PNP-HFB

✓ Removes the spurious contribution to \mathcal{E}^N = divergences *and* steps ✓ Does not modify the HFB functional (= functional at φ = 0) ✓ Correct "only" the most dramatic self-interaction/-pairing effects

Removing divergences

✓S-shape corrections right when neutrons/protons levels cross λ ✓Add up to reproduce the profile of spurious divergences ✓Eliminate perfectly the divergences (numerically stable)

Removing divergences AND steps

 \checkmark The projected PES is significantly modified when removing the spurious poles $\checkmark \mathcal{E}_{corr.}^{N}$ is independent on the number of integration points on a scale of 1 keV \checkmark Sign of the correction can change ; sum rule $\sum_{N} \mathcal{D}_{N} \mathcal{E}_{spu.}^{N} = 0$

Conclusions and perspectives

I. Skyrme phenomenology

 \checkmark Need to select and reproduce more benchmark ab-initio results.

Ex: potential energy in (S,T) channels. Need to be validated as a benchmark \checkmark Need to understand over-constraints from covariant analysis of parameters \checkmark Need to go beyond the standard Skyrme functional

II. Particle Number Projected DFT

 \checkmark Solution to the problem of divergences and jumps in Particle Number Projected DFT

 \checkmark Solution exists for higher-order density dependences

√Works for Relativistic DFT, T. Niksic, D. Vretenar, P. Ring, priv. comm.

 \checkmark More systematic study: order of magnitude, stability, impact on GCM mixing . . .

 \checkmark Self-interaction and self-pairing processes must be corrected for systematically in DFT

 $\checkmark \mathsf{Projected}\ \mathsf{DFT}\ \mathsf{needs}\ \mathsf{to}\ \mathsf{be}\ \mathsf{properly}\ \mathsf{motivated}/\mathsf{constructed}$

Improved phenomenology	 ✓ Improving single-particle spectra is crucial ✓ Tensor force could help (see Jacek's talk on thursday) ✓ Data on superdeformed states, fission isomers/barriers of (exotic) nuclei ✓ Constrain time-odd terms (odd nuclei? high-spin states? spin modes?) ✓ Pairing: gradient versus density dependences (isovector, low-density)
Connection to underlying methods	 ♠ Skyrme/Gogny functionals do not offer enough freedom ★ ⇒ Need guidance beyond a fit on <i>existing</i> data ♠ Functional validated through well-defined benchmark ab-initio results ★ ♠ Constructive framework from EFT (coherent 2-body/3-body) ♠ EFT + renormalization group ≡ V_{lowk}+ MBPT ♠ Gradient versus density dependences through DME
Long term strategy	 Avoid a "re-invent the wheel" approach Perdew in Coulomb DFT: "Jacob's ladder" of DFT Covariant analysis of parameters ; error estimate ; relevance of new data Improved fitting schemes
Grounding nuclear DFT	 ♠ No Hohenberg-Kohn theorem for projected-GCM DFT ⇒ Ad-hoc prescription to go from HFB to projected-GCM ♠ Ill-defined Particle-Number Projected DFT ★ ♠ Study spurious self-interaction/-pairing processes and correct for them ★
Multidimensional projected GCM	 Breaking more spatial symmetries Combine quadrupole, octupole, and pairing vibrations Approximate schemes to reduce computional cost Inclusion of correlations in the fit of the functional

Constraining the isovector effective mass m_v^*

T. Lesinski, B. Cochet, K. Bennaceur, T. D. and J. Meyer

- I. Why ? Because m_s^* and m_v^* influence
- Masses and single-particle density of states

