Proton-neutron asymmetry in exotic nuclei

M. A. Caprio

Center for Theoretical Physics, Yale University, New Haven, CT

RIA Theory Meeting Argonne, IL April 4–7, 2006

Collective properties of exotic nuclei

Extensive new set of nuclei

- Proton-neutron imbalance
- Changes in shell structure?

Theoretical effort: Anticipate new collective phenomena

- Signatures by which phenomena can be recognized
- Estimates of where phenomena may occur

Most low-energy collective phenomena essentially *isoscalar* Similar proton and neutron distributions in the ground state Deformation arises from strong proton-neutron quadrupole interaction, which couples proton and neutron deformations

Proton-neutron asymmetry in collective excitations

Scissors mode

e.g., ¹⁵⁶Gd

N. Lo Iudice and F. Palumbo, Phys. Rev. Lett. 41, 1532 (1978). F. Iachello, Nucl. Phys. A 358, 89c (1981). D. Bohle et al., Phys. Lett. B 137, 27 (1984).

Dipole resonances

A. Zilges et al., Phys. Lett. B 542, 43 (2002).

Mixed symmetry states

e.g., ⁹⁴Mo, ⁹⁶Ru

F. Iachello, Phys. Rev. Lett. 53, 1427 (1984). N. Pietralla et al., Phys. Rev. Lett. 84, 3775 (2000).

Asymmetry in coupling

Proton-neutron asymmetry in the ground state?

Very neutron-rich nuclei

Well-separated proton and neutron valence spaces

- \Rightarrow Reduced proton-neutron coupling strengths?
- \Rightarrow Larger role for proton-neutron asymmetry in ground state?

Nuclear structure

Ground state properties, excitation modes, transition radiations (M1)

Mechanisms for triaxiality

- Higher-order interactions in one-fluid Hamiltonian $(d^{\dagger}d^{\dagger}d^{\dagger}d\tilde{d}d$ or $\cos^2 3\gamma)$ P. Van Isacker and J. Chen, Phys. Rev. C **24**, 684 (1981).
- Higher-multipolarity pairs (hexadecapole)
- K. Heyde et al., Nucl. Phys. A **398**, 235 (1983).
- Unaligned proton and neutron symmetry axes
 A. E. L. Dieperink and R. Bijker, Phys. Lett. B 116, 77 (1982).
 - J. N. Ginocchio and A. Leviatan, Ann. Phys. (N.Y.) **216**, 152 (1992).

M. A. Caprio, CTP, Yale University

The interacting boson model (IBM-1)

Truncation to *s*-wave (J = 0) and *d*-wave (J = 2) nucleon pairs

 $s_0 d_{+2} d_{+1} d_0 d_{-1} d_{-2}$

States: Linear combinations of $(s_0^{\dagger})^n (d_{+2}^{\dagger})^{n'} \cdots |0\rangle$

Operators $(H, \hat{L}, \hat{T}, ...)$: Polynomials in $b^{\dagger}b$ $e.g, \hat{L} = \sqrt{10}[d^{\dagger} \times \tilde{d}]^{(1)}$ Algebraic model: Constructed from elements of Lie algebra

$$\mathbf{U}(6): \ s_0^{\dagger} s_0 \ s_0^{\dagger} d_{+2} \ \dots \ d_{-2}^{\dagger} d_{-2}$$

Dynamical symmetry

$$U(6) \supset \begin{pmatrix} U(5) \\ SO(6) \\ \frac{SU(3)}{SU(3)} \end{pmatrix} \supset SO(5) \\ \supset \underbrace{SO(3) \supset SO(2)}_{\text{Angular momentum}}$$

- H constructed from Casimir (invariant) operators of subalgebra chain
- Eigenstates have good quantum numbers
- Problem exactly soluble (energies, eigenstates, transition MEs)
- Defines distinct form of ground state configuration ("phase")

Classical limit of the IBM-1

Quadrupole-deformed liquid drop

Coherent states $|\beta, \gamma\rangle$

$$|\beta,\gamma\rangle = \left[s_0^{\dagger} + \beta\cos\gamma d_0^{\dagger} + \frac{1}{\sqrt{2}}\beta\sin\gamma (d_{+2}^{\dagger} + d_{-2}^{\dagger})\right]^N |0\rangle$$

Classical energy surface

 $\mathscr{E}(oldsymbol{eta},oldsymbol{\gamma})=\langleoldsymbol{eta},oldsymbol{\gamma}|H|oldsymbol{eta},oldsymbol{\gamma}
angle$

Minimization of $\mathscr{E} \Rightarrow$ ground state energy, equilibium coordinate values

Phase diagram of the IBM-1

 $H = (1 - \xi) \frac{1}{N} \hat{n}_d - \xi \frac{1}{N^2} \hat{Q}^{\chi} \cdot \hat{Q}^{\chi} \qquad \xi: \text{ (spherical)} \leftrightarrow \text{ (deformed)}$ $\hat{n}_d = d^{\dagger} \cdot \tilde{d} \quad \hat{Q}^{\chi} = (s^{\dagger} \times \tilde{d} + d^{\dagger} \times \tilde{s})^{(2)} + \chi (d^{\dagger} \times \tilde{d})^{(2)} \qquad \chi: \text{ (prolate)} \leftrightarrow (\gamma \text{-soft}) \leftrightarrow \text{ (oblate)}$

A. E. L. Dieperink, O. Scholten, and F. Iachello, Phys. Rev. Lett. **44**, 1747 (1980). D. H. Feng, R. Gilmore, and S. R. Deans, Phys. Rev. C **23**, 1254 (1981).

The proton-neutron interacting boson model (IBM-2) Proton and neutron pairs as separate boson species

 $\underbrace{s_{\pi,0}^{\dagger} d_{\pi,-2}^{\dagger} d_{\pi,-1}^{\dagger} d_{\pi,0}^{\dagger} d_{\pi,+1}^{\dagger} d_{\pi,+2}^{\dagger}}_{\text{Proton}} \underbrace{s_{\nu,0}^{\dagger} d_{\nu,-2}^{\dagger} d_{\nu,-1}^{\dagger} d_{\nu,0}^{\dagger} d_{\nu,+1}^{\dagger} d_{\nu,+2}^{\dagger}}_{\text{Neutron}}$

 $H = \varepsilon_{\pi} \hat{n}_{d\pi} + \varepsilon_{\nu} \hat{n}_{d\nu} + \kappa_{\pi\pi} Q_{\pi} \cdot Q_{\pi} + \kappa_{\pi\nu} Q_{\pi} \cdot Q_{\nu} + \kappa_{\nu\nu} Q_{\nu} \cdot Q_{\nu} + \cdots$

Symmetric dynamical symmetries (isoscalar)

$U_{\pi\nu}(5)$	$SO_{\pi\nu}(6)$	$SU_{\pi\nu}(3)$	$\overline{\mathrm{SU}_{\pi\nu}(3)}$
Spherical	γ-soft	Prolate	Oblate

P. Van Isacker, K. Heyde, J. Jolie, and A. Sevrin, Ann. Phys. (NY) 171, 253 (1986).

Asymmetric dynamical symmetries (isovector)

$$\mathbf{U}_{\pi}(6) \otimes \mathbf{U}_{\nu}(6) \supset \left\{ \begin{array}{l} \mathbf{SU}_{\pi}(3) \otimes \overline{\mathbf{SU}_{\nu}(3)} \\ \overline{\mathbf{SU}_{\pi}(3)} \otimes \mathbf{SU}_{\nu}(3) \end{array} \supset \overline{\mathbf{SU}_{\pi\nu}^{*}(3)} \\ \overline{\mathbf{SU}_{\pi\nu}(3)} \otimes \mathbf{SU}_{\nu}(3) \end{array} \right\} \supset \mathbf{SO}_{\pi\nu}(3) \supset \mathbf{SO}_{\pi\nu}(2)$$

A. E. L. Dieperink and R. Bijker, Phys. Lett. B **116**, 77 (1982). A. Sevrin, K. Heyde, and J. Jolie, Phys. Rev. C **36**, 2621 (1987). N. R. Walet and P. J. Brussaard, Nucl. Phys. A **474**, 61 (1987).

Essential parameters and coordinates for the IBM-2 Collective coordinates ("order parameters")

 $\begin{cases} \boldsymbol{\beta}_{\pi} \ \boldsymbol{\gamma}_{\pi} \ \boldsymbol{\theta}_{1\pi} \ \boldsymbol{\theta}_{2\pi} \ \boldsymbol{\theta}_{3\pi} \\ \boldsymbol{\beta}_{\nu} \ \boldsymbol{\gamma}_{\nu} \ \boldsymbol{\theta}_{1\nu} \ \boldsymbol{\theta}_{2\nu} \ \boldsymbol{\theta}_{3\nu} \end{cases} \Rightarrow \begin{cases} \boldsymbol{\beta}_{\pi} \ \boldsymbol{\gamma}_{\pi} \\ \boldsymbol{\beta}_{\nu} \ \boldsymbol{\gamma}_{\nu} \ \boldsymbol{\vartheta}_{1} \ \boldsymbol{\vartheta}_{2} \ \boldsymbol{\vartheta}_{3} \end{cases} \Rightarrow \begin{cases} \boldsymbol{\beta}_{\pi} \ \boldsymbol{\gamma}_{\pi} \\ \boldsymbol{\beta}_{\nu} \ \boldsymbol{\gamma}_{\nu} \end{cases}$

Coherent state energy surface $\mathscr{E}(\beta_{\pi}, \gamma_{\pi}, \beta_{\nu}, \gamma_{\nu}, \vartheta_1, \vartheta_2, \vartheta_3)$ Four order parameters: $\beta_{\pi}, \gamma_{\pi}, \beta_{\nu}$, and γ_{ν}

Hamiltonian parameters ("control parameters")

M. A. Caprio, CTP, Yale University

Proton-neutron symmetry energy (Majorana operator)

Difference between proton and neutron deformation tensors

$$\hat{M} \equiv -2 \sum_{k=1,3} (d_{\pi}^{\dagger} \times d_{\nu}^{\dagger})^{(k)} \cdot (\tilde{d}_{\pi} \times \tilde{d}_{\nu})^{(k)} + (s_{\pi}^{\dagger} \times d_{\nu}^{\dagger} - s_{\nu}^{\dagger} \times d_{\pi}^{\dagger})^{(2)} \cdot (\tilde{s}_{\pi} \times \tilde{d}_{\nu} - \tilde{s}_{\nu} \times \tilde{d}_{\pi})^{(2)} \approx |\alpha_{\pi} - \alpha_{\nu}|^{2}$$

Major ingredient in realistic Hamiltonian

$$H = \underbrace{\varepsilon_{\pi}\hat{n}_{d\pi} + \varepsilon_{\nu}\hat{n}_{d\nu}}_{\text{Pair energy}} + \underbrace{\kappa_{\pi\pi}Q_{\pi} \cdot Q_{\pi} + \kappa_{\pi\nu}Q_{\pi} \cdot Q_{\nu} + \kappa_{\nu\nu}Q_{\nu} \cdot Q_{\nu}}_{\text{Quadrupole}} + \underbrace{\lambda\hat{M}}_{\text{Symmetry}}$$

Strength λ approximately known

- From scissors and mixed-symmetry energies
- From M1 mixing ratios

$$\frac{\lambda}{\kappa_{\pi\nu}} \approx 5$$

Effect of Majorana operator on phase transition

- Phase transition to triaxiality delayed
- Proton and neutron equilibrium coordinates values brought together
- But also energy minimum at triaxial deformation shallower

 $SU^*_{\pi\nu}(3)$ triaxial \Rightarrow one-fluid triaxial \Rightarrow one-fluid γ -soft

Effect of Majorana operator on $SU^*_{\pi\nu}(3)$ structure

Proton-neutron triaxiality

Main signatures

- Low-lying K = 2 band
 - but rotational L(L+1) energy sequence
- Unusual B(E2) strength pattern similar to classic rigid triaxial rotor (Davydov)
- Anharmonically low K = 4 band
- Strong M1 admixtures
- Orthogonal scissors mode

But attenuated by Majorana operator

SU^{*}_{$\pi\nu$}(3) triaxial \Rightarrow one-fluid triaxial \Rightarrow one-fluid γ -soft

Where might asymmetric structure be expected?

Collective structure depends upon underlying single-particle structure

- Energy spacing (subshell gaps?)
- Ordering of orbitals (low *j*? high *j*?)
- Radial wave functions (compact? diffuse?)

Manifested in effective interactions

- Pairing interaction (s-wave, d-wave, ...)
- Multipole interaction (quadrupole, ...)
- Symmetry energy (Majorana)

Particle-like bosons \Rightarrow Prolate tendency Hole-like bosons \Rightarrow Oblate tendency

But very sensitive to underlying shell structure

A. van Egmond and K. Allaart, Nucl. Phys. A **425**, 275 (1984). T. Otsuka, Nucl. Phys. A **557**, 531c (1993).

Prospective regions for $SU^*_{\pi\nu}(3)$ triaxial structure

Conclusions

In preparation for exotic beam facility...

Have investigated proton-neutron asymmetric collective structure, within framework of IBM-2

Proton-neutron asymmetry

- Suppressed by Majorana interaction
- But could play role for nuclei far from stability
- $SU^*_{\pi\nu}(3)$ dynamical symmetry
 - Ideal limit, not likely to be reached
 - Illustrates basic characteristics of proton-neutron triaxiality

Full collective analysis of two-fluid system

- Phase diagram
- Nature of phase transitions
- Signatures of asymmetric structure

Bose-Fermi system

- Odd mass or odd-odd nuclei
 - bosonic core + unpaired nucleons
- Odd nuclei will play major role in shell structure studies
- Coupling to unpaired nucleon significantly influences collective structure of even-even core (core polarization)
- Interacting boson fermion model (IBFM)