Superconducting gubits for guantum information

Symposium in honor of Paul Benioff's fundamental contributions to quantum information

Argonne

National Laboratory

Andrew N Cleland

THE UNIVERSITY OF CHICAGO Molecular

Institute for

All work from UC Santa Barbara Collaboration with: J. Martinis, M. Geller, A. Korotkov, F. Wilhelm

Argonne National Laboratory Symposium on Quantum Computing: **Beginnings to Current Frontiers** May 26 2016 3:10-4 pm

Quantum engineered systems

- Quantum computation
 - Gate-based implementation of quantum algorithms (Shor, Grover)
 - Quantum simulation of complex systems (e.g. molecular chemistry)
 - Adiabatic evolution for minimization problems (e.g. traveling salesman)
- Quantum communication
 - Quantum key distribution
 - Quantum repeaters
- Quantum sensing
 - Detection of weak fields
 - Detection of small displacements
 - Long baseline interference
- Ions, Rydberg atoms, BECs
- Semiconductor quantum dots

Institute for Molecular Engineering

- Atomic defects (NV, P in Si)
- Superconducting circuits

Superconducting circuits in the traditional semiconductor technology roadmap

- Materials
- Device design
- Circuit design
- Interconnects

- Current focus of most research
- Tightly interconnected
 for engineered quantum
 devices/circuits
- Board level integration
- Systems integration
- Packaging

Institute for Molecular Engineering

Microwave frequency circuits: $\omega/2\pi \sim 5 - 10 \text{ GHz}$

- Operate at 25 mK: $k_BT \ll \hbar\omega \Rightarrow$ quantum ground state
- Need anharmonicity to enable quantum control

Superconducting qubits

Josephson junction: A <u>very</u> nonlinear inductor Capacitor is critical to qubit performance

magnetic flux Φ

- \succ Qubit levels $|g\rangle$ and $|e\rangle$
- \geq Qubit frequency $\omega_{ge} \sim 4 6 \text{ GHz}$
- > Anharmonicity at single photon level: $\omega_{ef} \approx 0.95 \omega_{ge}$
- \succ Can tune $\omega_{ge} \& \omega_{ef}$ by changing flux through qubit
- \succ Qubit T_1 is determined by loss mechanisms in capacitor

Institute for Molecular Engineering

Measurement:

- Dispersive resonator readout
- Measure change in phase of fewphoton excitation in readout resonator
- Projective & accurate

Z rotations:

- Flux tuning varies L
- Changes ω_{ge}

X and Y rotations:

• Microwaves at ω_{ge}

Institute for Molecular Engineering

Josephson – junctions (inductance L)

Institute for Molecular Engineering

THE UNIVERSITY OF CHICAGO

Institute for Molecular Engineering

High fidelity quantum gates

- Complete set of single qubit gates needed to execute an arbitrary quantum algorithm
- All single qubit gates operate with fidelity > 99.9% (randomized benchmarking)
- Controlled Z gate (equivalent to CNOT):

40 ns execution time 99.5% fidelity

State preparation and measurement fidelity ~ 90%

How do we measure these low error rates?

Gate	Fidelity (±0.03)	
Х	99.92	
Y	99.92	
X/2	99.93	
Y/2	99.95	
-X	99.92	
-Y	99.91	
-X/2	99.93	
-Y/2	99.95	
Н	99.91	
Ι	99.95	
S (Z/2)	99.92	
T ($e^{i\pi/4}$)	No RB method – not a Clifford	

THE UNIVERSITY OF CHICAGO

Institute for Molecular Engineering

ERSITY OF

Engineering

CAGC

Laboratory

Benchmarking

- Imperfect state ۲ preparation
- Imperfect state \bullet measurement
- Individual gate ۲ errors small compared to **SPAM**
- Randomized >benchmarking

gate

Engineering

ERSITY OF

CAGC

95-97%

Prepare

National

Laboratory

High fidelity quantum gates	Gate	Fidelity (± 0.03)	
Complete set of single qubit	Х	99.92	
gates needed to execute an	Y	99.92	
arbitrary quantum algorithm	X/2	99.93	
All single qubit gates operate	Y/2	99.95	
(randomized benchmarking)	-X	99.92	
\sim Controlled 7 gate (equivalent to	-Y	99.91	
CNOT):	-X/2	99.93	
40 ns execution time	-Y/2	99.95	
99.5% fidelity	Н	99.91	
State preparation and	Ι	99.95	
measurement fidelity ~ 90%	S (Z/2)	99.92	
 Measurement now 98% in 150 ns Dominant errors due to T_1 decay 	T ($e^{i\pi/4}$)	No RB method – not a Clifford	
THE UNIVERSITY OF Institute for Molecular Engineering Argonne National Laboratory			

Progress in qubit T_1

Institute for Molecular Engineering

Aluminum resonators on sapphire

- MBE grown Al on annealed sapphire gives best performance
- Intrinsic Q around 2×10^6 at low power
- Film quality & substrate properties critical

Institute for Molecular Engineering

Argonne National

Superconducting qubits on sapphire

• $T_1(Q)$ vary strongly with frequency (repeatable)

Defects: Two-level states at GHz frequencies

SEM inspection

Microwave measurement

- GHz-frequency two-level states become active at low temperatures
- Circuits primarily sensitive to electrically active TLS
- \blacktriangleright Reduce qubit T_1 and resonator Q
- > Participation strongest for aligned dipoles in strong electric fields

What are these TLS?

<u>Where</u> do they come from?

How do we minimize/eliminate them?

Limiting effects due to materials

Two-level states

- > Most important contributor to qubit T_1
- Resonators (single step fabrication) have 3-5 times fewer TLS
- Origin unknown
- Become active at low temperatures
- Vary with substrate and substrate preparation

Flux noise

- > Important limiting effect on qubit T_{ϕ}
- No apparent effect on resonators
- Origin unknown
- Investigated since 1980s in SQUIDs
- Surface density of correlated magnetic dipoles (~10¹³/cm²)?

Programming a 5 qubit GHZ state $|ggggg\rangle + |eeeee\rangle$

Molecular Engineering

CHICAGO

Superconducting implementation of Shor's algorithm

Quantum processor with 4 qubits and 5 microwave resonators
 von Neumann architecture to factor 15 using Shor's algorithm
 Achieves correct answer 48% of attempts (best possible 50%)

CHICAGO

Institute for Molecular Engineering

Lucero et al. Nature Physics (2012)

Building perfection from imperfection: The surface code

Measure-X qubit cycle

Institute for

Engineering

Molecular

Argonne

National

Laboratory

Result: $\hat{X}\hat{X}\hat{X}\hat{X}$ eigenstate

Data qubit:

- Stores computational state $|\psi
 angle$
- 🗙 Measure-X qubit:
- Stabilizes data qubits $\hat{X}\hat{X}\hat{X}$

Measure-Z qubit:

Stabilizes data qubits $\hat{Z}\hat{Z}\hat{Z}$

Surface code \hat{X} stabilizer cycle:

- Qubit state reset
- Hadamard gate
- Multiple two-qubit CNOTs
- Projective measurement

Analogous \hat{Z} stabilizer

Need overall fidelity > 99.5%

 Shor: Find the prime factors of the integer N.
 Classical sieve algorithm: O(exp(1.9(log N)^{1/3}(log log N)^{2/3}) steps. Quantum Shor algorithm: O((log N)²(log log N)(log log log N)) steps Answer is probabilistic; assumes unlimited resources

AGO

Institute for Molecular Engineering

Building perfection from imperfection: The surface code

- Assume error rate 1/10th threshold (99.95% fidelity)
 Logical memory qubit from array of physical qubits
 - $> \times 1,000$ smaller error rate: ~600 physical qubits
 - > \times 1,000,000 smaller error rate: ~2,000 physical qubits
 - $> \times 1,000,000,000$ smaller rate: ~4,500 physical qubits

Circuit to demonstrate topological CNOT:

➢ With × 1,000 smaller error rate: ~1,800 physical qubits

Prime factoring with Shor's algorithm:

- ➤ Factor a 15 bit number (10⁵): ~40,000,000 qubits
- ➤ Factor a 2000 bit number (10⁶⁰⁰): ~1,000,000,000 qubits

Quantum computer circuit

THE UNIVERSITY OF CHICAGO

Institute for Molecular Engineering

"Gate-based" quantum computation: Challenges

- Scale-up challenge: 1D to 2D qubit circuits
- Demonstrate full quantum error correction Fix X, Y, Z errors caused by environment
- Demonstrate logical qubit

Logical qubit state lifetime longer than physical qubit lifetime

- Demonstrate "large" logical qubit entanglement
- Demonstrate protected logical operations Logical qubit manipulations with error protection
- Scale-up challenge: 2D to 3D wiring interconnects
- Quantum simulations: Useful & interesting problems

Superconducting qubits for quantum information

Symposium in honor of Paul Benioff's fundamental contributions to quantum information

> Argonne National

aboratory

Andrew N Cleland

THE UNIVERSITY OF CHICAGO Institute for Molecular

Argonne National Laboratory Symposium on Quantum Computing: **Beginnings to Current Frontiers** May 26 2016 3:10-4 pm