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Quantum engineered systems

 Quantum computation
 Gate-based implementation of quantum algorithms (Shor, Grover)
 Quantum simulation of complex systems (e.g. molecular chemistry)
 Adiabatic evolution for minimization problems (e.g. traveling salesman)

 Quantum communication
 Quantum key distribution
 Quantum repeaters

 Quantum sensing
 Detection of weak fields
 Detection of small displacements
 Long baseline interference

 Ions, Rydberg atoms, BECs

 Semiconductor quantum dots
 Atomic defects (NV, P in Si)

 Superconducting circuits
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Superconducting circuits in the traditional 
semiconductor technology roadmap

 Materials
 Device design
 Circuit design
 Interconnects
 Board level integration
 Systems integration
 Packaging

 Current focus of most 
research

 Tightly interconnected 
for engineered quantum 
devices/circuits
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• Operate at 25 mK: ݇஻ܶ ≪ ԰߱ ⇒ quantum ground state

• Need anharmonicity to enable quantum control 

Microwave frequency circuits:  ߱ ⁄ߨ2 ~	5 െ 10	GHz
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Superconducting qubits

 Anharmonicity at single photon level: ߱௘௙ ൎ 0.95	 ௚߱௘
 Qubit levels |݃〉 and ݁
 Qubit frequency ௚߱௘	~	4 െ 6	GHz

Josephson junction: 
A very nonlinear 

inductor

en
er

gy

magnetic flux Φ|݁݃〉 ௚߱௘߱௘௙݂Al
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 Can tune ௚߱௘ &	߱௘௙ by changing flux through qubit

∝ Φଶ െ ߳Φସ

Capacitor is 
critical to qubit 
performance

 Qubit ଵܶ is determined by loss mechanisms in capacitor
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Josephson
junctions

in flux loop

Transmon qubit
(UCSB variant)

Coupling to 
other qubits

Measurement:
• Dispersive 

resonator 
readout 

• Measure change 
in phase of few-
photon excitation 
in readout 
resonator

• Projective & 
accurate

Z control

Z rotations:
• Flux tuning varies ܮ
• Changes ௚߱௘ Josephson 

junctions 
(inductance L)

Capacitance 
C

X and Y rotations:
• Microwaves at ௚߱௘
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direct 
capacitive 
coupling 
between 

qubits

XY XY

XY XY XY ZZZZZ

readout waveguide

readout resonators
(one per qubit)

two control lines 
per qubit
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Gate Fidelity (േ0.03)X 99.92Y 99.92X/2 99.93Y/2 99.95-X 99.92-Y 99.91-X/2 99.93-Y/2 99.95H 99.91I 99.95S	(Z/2ሻ 99.92T	ሺ݁௜గ/ସሻ No	RB	method	–not	a	Clifford

 Complete set of single qubit 
gates needed to execute an 
arbitrary quantum algorithm

 All single qubit gates operate 
with fidelity > 99.9% 
(randomized benchmarking)

 Controlled Z gate (equivalent to 
CNOT):

High fidelity quantum gates

40 ns execution time
99.5% fidelity 

 State preparation and 
measurement fidelity ~ 90%

How do we measure these low 
error rates?
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Avoided crossing ஺݁݁஻ െ | ஺݂݃஻〉:

| ஺݁݁஻〉
| ஺݂݃஻〉
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Qubit A tuning

Adiabatic trajectory
40 ns total duration!஺݁݁஻ ⇒ െ ஺݁݁஻

Controlled Z (CZ) gate:஺݁݁஻ ⇒ െ ஺݁݁஻
Other states left unchanged

ܷ ൌ 1 00 1 0 00 		00 00 0 1 		00 െ1
A B

Direct 
capacitive 
coupling
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ଵ ோଵ ଵଵ ଵPrepare Measureଵ

• Imperfect state 
preparation

• Imperfect state 
measurement

• Individual gate 
errors small 
compared to 
SPAM

random
gate

test
gate

95-97%

reset
gate

90-95%
݉ gates

Benchmarking

random
gate

test
gate

random
gate

test
gate

 Randomized 
benchmarking
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Gate Fidelity (േ0.03)X 99.92Y 99.92X/2 99.93Y/2 99.95-X 99.92-Y 99.91-X/2 99.93-Y/2 99.95H 99.91I 99.95S	(Z/2ሻ 99.92T	ሺ݁௜గ/ସሻ No	RB	method	–not a	Clifford

 Complete set of single qubit 
gates needed to execute an 
arbitrary quantum algorithm

 All single qubit gates operate 
with fidelity > 99.9% 
(randomized benchmarking)

 Controlled Z gate (equivalent to 
CNOT):

High fidelity quantum gates

40 ns execution time
99.5% fidelity 

 State preparation and 
measurement fidelity ~ 90%

 Dominant errors due to ଵܶ decay
 Measurement now 98% in 150 ns
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Progress in qubit ଵ

Improvements:
• Fewer imperfections
• Reduced electric fields
• Better circuit design

(UC Santa Barbara results)
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Aluminum  resonators on sapphire
• MBE grown Al on annealed sapphire gives best performance
• Intrinsic ܳ around 2 ൈ 106 at low power
• Film quality & substrate properties critical

ܳ ௜
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Superconducting qubits on sapphire
• ଵܶ (ܳ) vary strongly with frequency (repeatable)
• ଵܶ (ܳ) consistent with two-level states

Resonators have Q’s 3-5 times higher
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Defects: Two-level states at GHz frequencies

SEM inspection Microwave measurement
 GHz-frequency two-level states become active at low temperatures
 Circuits primarily sensitive to electrically active TLS
 Reduce qubit ଵܶ and resonator ܳ
 Participation strongest for aligned dipoles in strong electric fields

What are these TLS?
Where do they come from?
How do we minimize/eliminate them?
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 Most important contributor to qubit ଵܶ
 Resonators (single step fabrication) have 3-5 times fewer TLS	
 Origin unknown
 Become active at low temperatures
 Vary with substrate and substrate preparation

Two-level states

Flux noise
 Important limiting effect on qubit థܶ
 No apparent effect on resonators
 Origin unknown
 Investigated since 1980s in SQUIDs
 Surface density of correlated magnetic dipoles (~1013/cm2)?

Limiting effects due to materials
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࣠ ൌ 0.995 ࣠ ൌ 0.960 ࣠ ൌ 0.863 ࣠ ൌ 0.817

|݃〉 Y/2|݃〉 -Y/2 Y/2|݃〉 -Y/2|݃〉 -Y/2 Y/2Y/2
|݃〉 -Y/2 Y/2

CZ
CZ

CZ
CZ

A
B
C
D
Eܰ ൌ 2 Bell ܰ ൌ 3 GHZ ܰ ൌ 4 GHZ ܰ ൌ 5 GHZ

Programming a 5 qubit GHZ state 
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 Quantum processor with 4 qubits and 5 microwave resonators
 von Neumann architecture to factor 15 using Shor’s algorithm 
 Achieves correct answer 48% of attempts (best possible 50%)

Lucero et al. Nature Physics (2012)

Superconducting implementation of Shor’s algorithm
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individual
physical 
qubits

Need overall fidelity > 99.5%

Analogous መܼ 	stabilizer

Measure-X qubit: 
Stabilizes data qubits ෠ܺ ෠ܺ ෠ܺ ෠ܺ
Measure-Z qubit:
Stabilizes data qubits መܼ መܼ መܼ መܼ

Data qubit:
Stores computational state |߰〉

Surface code ෠ܺ	stabilizer cycle:
• Qubit state reset
• Hadamard gate
• Multiple two-qubit CNOTs
• Projective measurement

Measure-X qubit cycle

Result: ෠ܺ ෠ܺ ෠ܺ ෠ܺ eigenstate

Building perfection from imperfection: The surface code
Square array of physical qubits
Only nearest-neighbor coupling
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Quantum algorithms
 Quantum entanglement enables new problem-solving 

algorithms
 Deutsch-Jozsa: Given a black-box function ݂ Ԧݔ → 0,1 , where ݔԦ is an ܰ element binary vector, determine whether ݂ is constant or balanced.

Classical algorithm needs 2ேିଵ ൅ 1 function evaluations (worst case). 
Deutsch-Jozsa gets answer with one evaluation (non-probabilistic). 

 Grover: Given a black-box function ݕԦ ൌ ݂ሺݔԦሻ, where ݔԦ has ܰ possible 
values, find ݔԦ given ݕԦ.
Classical algorithm needs ࣩሺܰሻ function evaluations. Grover gets high-
probability answer with ࣩሺܰଵ ଶ⁄ ሻ evaluations (quadratic speed-up). 
Makes brute-force attack on small (128 bit) RSA encryption feasible.

 Shor: Find the prime factors of the integer ܰ.

LogሺܰሻLog ଵ଴ሺ
ሻ(comݐ

pu
ta

tio
n 

tim
e)

Classical sieve algorithm: ࣩሺexp	ሺ1.9 logܰ ଵ ଷ⁄ log logܰ ଶ ଷ⁄ 	ሻ steps. 
Quantum Shor algorithm: ࣩሺ logܰ ଶሺlog logܰሻሺlog log logܰሻሻ steps 
Answer is probabilistic; assumes unlimited resources

RSA-500RSA-768

ࣩሺ10଺ሻ
speedup

ࣩሺ10ଽሻ
speedup

ࣩሺ10ସሻ

ࣩሺ10ଵሻ
Sieve

Shor

(size of problem)
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Building perfection from imperfection: The surface code
 Assume error rate 1/10th threshold (99.95% fidelity)

 ൈ 1,000	smaller error rate: ~600 physical qubits
 ൈ 1,000,000	smaller error rate: ~2,000 physical qubits
 ൈ 1,000,000,000	smaller rate: ~4,500 physical qubits

Logical memory qubit from array of physical qubits

Circuit to demonstrate topological CNOT:
 With ൈ 1,000 smaller error rate: ~1,800 physical qubits

Prime factoring with Shor’s algorithm:
 Factor a 15 bit number (105): ~40,000,000 qubits 
 Factor a 2000 bit number (10600): ~1,000,000,000 qubits
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output

time

control

targets

|݁〉 |݁〉|݃〉 |݁〉|݃〉|݁〉݃ ൅ ݅|݁〉 ݁ ൅ ݅|݃〉݃ ൅ |݁〉 ݃ െ |݁〉|݃〉|݁〉݃ ൅ ݅|݁〉 ݁ ൅ ݅|݃〉݃ ൅ |݁〉 ݃ െ |݁〉
99% of a factoring 

computer is used to 
purify states

What does this code do?
It “purifies” a special state:௜గ ସ⁄
Needed for gate

Quantum computer circuit
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“Gate-based” quantum computation: Challenges

 Demonstrate full quantum error correction
Fix ܺ, ܻ, ܼ errors caused by environment 

 Demonstrate logical qubit
Logical qubit state lifetime longer than physical qubit lifetime

 Demonstrate “large” logical qubit entanglement
 Demonstrate protected logical operations

Logical qubit manipulations with error protection

 Scale-up challenge: 2D to 3D wiring interconnects
 Quantum simulations: Useful & interesting problems

 Scale-up challenge: 1D to 2D qubit circuits
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