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High-impact-factor syndrome (HIFS)

High-impact-factor syndrome (HIFS) is a disease of scientists
and administrators. The most virulent manifestation of the
disease lies in judging the accomplishments of individual
scientists, especially junior scientists, in terms of the number
of publications in high-impact-factor (HIF) journals.

C. M. Caves, “High-impact-factor syndrome,” APSNews 23(10), 8,6 (2014
November). Back-page opinion piece on HIFS.

If you think your institution would benefit from straight talk
about HIFS, contact C. M. Caves at ccaves@unm.edu .
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Quantum information science

A new way of thinking

Computer science
Computational complexity
depends on physical law.

New physics

Quantum mechanics as liberator.

What can be accomplished with
guantum coherence that can’t be
done in a classical world?
Explore what qguantum systems
can do, instead of being satisfied
with what Nature hands us.

Quantum engineering
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S. L. Braunstein, C. M. Caves, and G. J. Milburn, Ann. Phys. 247,
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V. Giovannetti, S. Lloyd, and L. Maccone, PRL 96, 041401 (2006).
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Achieving the 1/N "Heisenberg limit”
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Quantum limit on practical optical interferometry

1. Cheap photons from a laser (coherent state)
2. Low losses on the detection timescale
3. Beamsplitter to make differential phase detection insensitive to laser fluctuations

Freedom: state input to the second input port; optimize with a mean number constraint.
Entanglement: mixing this state with coherent state at the beamsplitter.
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Mach-Zehnder configuration. Achieved by squeezed vacuum into the second input port




Practical optical interferometry: Photon losses

M. D. Lang , UNM PhD dissertation, 2015.
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Upper bound on quantum Fisher information
maximized over fake phase shifts ¢1 and ¢
and over all states input to second input port
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Optimum achieved by differenced photodetection in a Mach-Zehnder configuration.
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Quantum-optical experiments

S. Rahimi-Keshari, T. C. Ralph, and C. M. Caves, PRX, to be published; arXiv:1511.06526.
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OQutput distribution
p(n) = Tr[MN,E(pin)]

Question: Can one sample efficiently from
the output distribution classically?




Boson sampling

S. Aaronson and A. Arkhipov, Theory of
Computing 9(4), 143 —252 (2013). piﬂ 3 Quantum /T
. Process

g |1

M

pin. N >~ M single photons into the first N modes

Quantum process &: passive linear-optical network (LON)
E(pin) = Upinld? a= (a1 ... aum)
Uald = aU U = M x M matrix

[1,,: on-off photodetection

p(n) is the permanent of a (sub)matrix of U.

It Is very likely that one cannot sample
efficiently from the output distribution.




Classical inputs and classical processes
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Simulation using arbitrary operator orderings
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Classical simulation using classical waves if all the
PQDs are efficiently computable and nonnegative
(and no more singular than a & function).

p(n) = [ a2 <MW (1B) [a?a T80 (Bla) WO (alpin)

We actually only need the output and measurement
PQDs to be efficiently computable and nonnegative.




Classical simulation of imperfect boson sampling

N single photons i
p=(1—p)|0)(O] + u|1)(1]

Purity u

Mode mismatching np

LON with depth d
and uniform loss

nL=mni=n
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On-off photodetectors
Efficiency np

Random-count
probability pp

Classical simulation by this method if and only if

N = min(M,~/M /n)
Input purity p = 0.5

Input mode mismatching ng = 0.1
Ports per optical element ¢ =2
Loss per optical element no = 0.98
Photodetector efficiency np = 0.95



Classical simulation of imperfect boson sampling
N = min(M,v/M /n)
Classical simulation by Input purity p = 0.5
this method if and only if Input mode mismatching ng = 0.1
S 5 — Ports per optical element £ =2
PD =7 HNBTILND- Loss per optical element ng = 0.98
Photodetector efficiency np = 0.95

i
M nL n | vM/n N Nn 1 pS™

10 0.94 | 0.044 71 10 0.44 0.044 |0.046
100 0.87 |0.042] 241 100 4.2 0.042 10.049
1600 0.81 |0.038] 1044 1044 40 0.038 |0.034

Dark-count probability < n relatively easy to achieve.
Mode-mismatched photons

Mode-mismatched photons that reach and are counted at the
photodetectors are the chief challenge for boson sampling.
Simulation criterion is roughly that the number of random
counts exceed the number of mode-matched counts.
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