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Talk has two parts 
      Discuss beginnings of quantum computing 
 Basis of my interest in Hamiltonian models 
       Problems in developing  these as models of 
  Quantum Turing machines. 

Describe  effects of scalar scaling field on  
  physics and geometry. 
     Based on:  
 Localization of mathematical structures 
  as in gauge theory. 
 Separation of concepts of number and number value 

Overall framework:  Interest in relations between 
 foundations of mathematics and physics. 



Quantum Computers 
Why quantum mechanical models of computers 
 Computers are complex physical systems 
      Should be possible to describe quantum mechanically. 
 Description necessary if any progress is to be made in 
       Describing intelligent beings  quantum mechanically 



Quantum Computers 
Why quantum mechanical models of computers 
 Computers are complex physical systems 
      Should be possible to describe quantum mechanically. 
 Description necessary if any progress is to be made in 
       Describing intelligent beings  quantum mechanically 

If quantum mechanics is  truly universally  applicable, 
 Then it should describe its own validation. 

It should describe computation process for making theoretical predictions 

In particular, the  computation process should be described by the 
   dynamics of a complicated,  isolated  quantum mechanical system. 



Quantum Computers 
Why quantum mechanical models of computers 
 Computers are complex physical systems 
      Should be possible to describe quantum mechanically. 
 Description necessary if any progress is to be made in 
       Describing intelligent beings  quantum mechanically 

If quantum mechanics is  truly universally  applicable, 
 Then it should describe its own validation. 

It should describe computation process for making theoretical predictions 

In particular, the  computation process should be described by the 
   dynamics of a complicated,  isolated  quantum mechanical system. 

This implies the need of a  Hamiltonian description  
 of the dynamics of computation. 



Problem: Hamiltonian descriptions are restricted to  
 processes that are reversible. 
 
 Computations  have many irreversible steps, 
  These steps dissipate energy. 
 
Heat generated by energy dissipation is large problem in computers 
 Problem becomes more acute as computer elements become smaller. 
  Fraction of heat due to irreversible computation steps 
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   ergs per bit erased. 
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  Fraction of heat due to irreversible computation steps 
 
 Landauer: “Information is Physical” 
  kTln2 energy dissipated as heat per bit erased. 
        At room temperature, about  
   ergs per bit erased. 

To proceed, a specific model of computers  is needed. 
 Chose Turing machines. 
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Turing machines are slow but very powerful. 
 Any computation can be done on a Turing machine.  

Turing machines consist of a tape divided into cells,  
  each cell contains a 0 or a 1.  
 A head  reads tape cell contents.  
  Possible head operations  are  
   change cell contents,  
   move one cell to left or right.  
  Head operation determined by state of head. 

  0   1  1   1  0  1   0  1   1   0  0   0 

  s 
head 

Each computation defined by set of quadruples of form (s,a,b,t) 
 examples: (s,0,1,t),  (t,1,r,v),  (v,1,0,y), (s,1,l,x), 
 reversibility problem, (w,0,1,t) 

Reversibility problem and Hamiltonian, what to do? 



Reversibility problem solved by Bennett’s reversible Turing machines 
 with history tape 
Bennett showed that for each Turing machine there exists a 
 reversible machine that does the same computation. 

My solution, Construct a Hamiltonian model of a Turing machine 
 with history tape that erases its own history. 
Show no energy dissipated in the model. 

Did this in several steps: 
 First paper used simplified dynamics,  
  created and saved history tape. 

Journal of Statistical Physics 
The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as 
represented by Turing machines 
Paul Benioff 
May 1980, Volume 22, Issue 5, pp 563-591 
In this paper a microscopic quantum mechanical model of computers as represented by Turing machines is 

constructed. It is shown that for each number N and Turing machine Q there exists a Hamiltonian 𝐻𝑁
𝑄

 and a 

class of appropriate initial states such that if  Ψ𝑁
𝑄

(0) is such an initial state,  then Ψ𝑁
𝑄

 (t) =exp(−𝑖𝐻𝑁
𝑄

t)Ψ𝑁
𝑄

(0) 
correctly describes at times t 3,t 6,⋯,t 3N model states that correspond to the completion of the first, second, 
⋯, Nth computation step of Q. The model parameters can be adjusted so that for an arbitrary time interval Δ  

around t 3,t 6,⋯,t 3N, the “machine” part of Ψ𝑁
𝑄

(t) is stationary. 



Irreversibility and energy dissipation was big problem in computation process. 
Some argued that it was essential part of computation. 
 Examples of papers supporting this: 

. 

Energy Cost of Information Transfer 
Jacob D. Bekenstein 
Phys. Rev. Lett. 46, 623 (1981) – Published 9 March 1981 
From thermodynamic and causality considerations a general upper bound on the rate at which information can be 
transferred in terms of the message energy is inferred. This bound is consistent with Shannon's bounds for a band-
limited channel. It prescribes the minimum energy cost for information transferred over a given time interval. As an 
application, a fundamental upper bound of 1015 operations/sec on the speed of an ideal digital computer is 
established. 

Irreversibility, Uncertainty, Relativity and Computer Limitations.  
D. Mundici, 
Nuovo Cimento 61B, 297, 1981 
Any computer M is subject to such laws as irreversibility and uncertainty of time-energy and maximality of the 
speed of light. This imposes fundamental limitations on the performance of M and, more generally, on the power 
of algorithmic methods for several important logic operations; this also has an impact on the problem of what is 
knowable in mathematics.  

Minimum energy requirements of information transfer and computing 
Hans J. Bremermann 
International Journal of Theoretical Physics 
April 1982, Volume 21, Issue 3, pp 203-217 
The minimum energy requirements of information transfer and computing are estimated from the time-
energy uncertainty relation. 



These positions were challenged  in other papers, 

Is There a Fundamental Bound on the Rate at Which Information Can Be Processed? 
David Deutsch 
Phys. Rev. Lett. 48, 286 (1982) – Published 25 January 1982 
It is shown that the laws of physics impose no fundamental bound on the rate at which information can be 
processed. Recent claims that quantum effects impose such bounds are discussed and shown to be 

erroneous. 

Uncertainty principle and minimal energy dissipation in the computer 
Rolf Landauer 
International Journal of Theoretical Physics 
April 1982, Volume 21, Issue 3, pp 283-297 
Reversible computation is briefly reviewed, utilizing a refined version of the Bennett-Fredkin-Turing machine, invoked in an 
earlier paper. A dissipationless classical version of this machine, which has no internal friction, and where the computational 
velocity is determined by the initial kinetic energy, is also described. Such a machine requires perfect parts and also requires 
the unrealistic assumption that the many extraneous degrees of freedom, which contribute to the physical structure, do not 
couple to the information-bearing degrees of freedom, and thus cause no friction.  
Quantum mechanical computation is discussed at two levels. First of all we deplore the assertion. repeatedly found in the 
literature, that the uncertainty principle. ΔEΔt≈h, with Δt equated to a switching time, yields any information about energy 
dissipation. Similarly we point out that computation is not an iterated transmission and receiving process, and that 
considerations, which avoid the uncertainty principle, and instead use quantum mechanical channel capacity 
considerations, are equally unfounded. At a more constructive level we ask whether there is a quantum mechanical version 
of the disispationless computer. Benioff has proposed one possible answer Quantum mechanical versions of dissipationless 
computers may suffer from the problems found in electron transport in disordered one-dimensional periodic potentials. The 
buildup of internal reflections may give a transmission coefficient. through the whole computation, which decreases 
exponentially with the length of the computation. 

Presented at conference at Endicott house, MIT in May, 1981 
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My earlier papers described a quantum mechanical Hamiltonian model of Turing 
 machines that created and saved a history tape.  
  No energy dissipation was present. 
Landauer:  This delays the inevitable.   
 The history tapes have to be erased sometime.  

My talk at the conference took care of this problem 

Quantum mechanical Hamiltonian models of discrete processes that erase their own histories:  
Application to Turing machines 
Paul A. Benioff 
International Journal of Theoretical Physics 
April 1982, Volume 21, Issue 3, pp 177-201 
Work done before on the construction of quantum mechanical Hamiltonian models of Turing machines and general 
discrete processes is extended here to include processes which erase their own histories. The models consist of three 
phases: the forward process phase in which a map T is iterated and a history of iterations is generated, a copy phase, 
which is activated if and only if T reaches a fix point, and an erase phase, which erases the iteration history, undoes the 
iterations of T, and recovers the initial state except for the copy system. A ballast system is used to stop the evolution at 
the desired state. The general model so constructed is applied to Turing machines. The main changes are that the 
system undergoing the evolution corresponding  to T iterations becomes three systems corresponding to the internal 
machine, the computation tape, and computation head. Also the copy phase becomes more complex since it is desired 
that this correspond also to a copying Turing machine. 





In the meantime  Landauer encouraged me to publish another paper 
to make the notion of quantum computers more visible.  The result 
was this paper. 

Quantum Mechanical Models of Turing machines That Dissipate No Energy, 

Paul Benioff 

Phys. Rev. Lett. 48, 1581 (1982) – Published 7 June 1982 

Quantum mechanical Hamiltonian models of Turing machines are constructed here on a finite 

lattice of spin-½ systems. The models do not dissipate any energy and they operate at the quantum 

limit in that the system (energy uncertainty)/(computation speed) is close to the limit given by the 

time-energy uncertainty principle. 
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Dissipation in Computation 
W. Porod, R. O. Grondin, D. K. Ferry, and G. Porod 
Phys. Rev. Lett. 52, 232 (1984) – Published 16 January 1984 
The question of the energy dissipation in the computational process is considered. Contrary to previous 
studies, dissipation is found to be an integral part of computation. A complementarity is suggested between 
systems that are describable in thermodynamic terms and systems that can be used for computation. 

This was not the end of controversy.  In 1984 the following paper 
appeared. 



In response, comments section of Phys. Rev. Lett. Of Sept,  17,1984 was taken      
 over with  criticisms of paper by Bennett,  Benioff, Toffoli, and Landauer. 
 
Porod et al responded in same PRL section with a criticism of our criticisms. 
 Their response ended with the following: 

“In summary, much of the above commentary concerns various Gedankenexperimente 
which are claimed to demonstrate dissipationless computation. The fact that these 
machines are carefully designed to be logically invertible is irrelevant for the question 
of dissipation. We further argue with these constructions on physical grounds. In 
designing a valid experiment one must retain, and not a priori discard, the possibility 
of dissipation and broken time-reversal symmetry. “ 

This was essentially the end of criticism, as far as I was aware. 
 
Next phase in development of quantum computation. 





Shors Algorithm for ¯nding prime factors of large numbers is example.

Proposed in 1994 by Peter Shor.

Algorithm caused explosion of interest in quantum computing.

Finding prime factors of large numbers basis of RSA coding.

Used by security agencies, banks for encryption.

Quantum computers using Shors algorithm can e±ciently break code.

NSA present at post 1994 workshops, conferences. 



Shors Algorithm for ¯nding prime factors of large numbers is example.

Proposed in 1994 by Peter Shor.

Algorithm caused explosion of interest in quantum computing.

Finding prime factors of large numbers basis of RSA coding.

Used by security agencies, banks for encryption.

Quantum computers using Shors algorithm can e±ciently break code.

Wikipedia: As of 4/2016, largest integer factored is 200,099

by D-wave quantum processor.

NSA present at post 1994 workshops, conferences. 

As shown by presentations at this symposium, there is much work towards  
 goal  of creating a quantum computer.  
     Work consists of  creating physical models of groups of qubits  in  entangled 
  states  that evolve under some type of interaction and are  
        stable against decoherence or errors for a sufficient period.  



Background 

Interested in relationship between foundations of mathematics, physics. 
        Influenced by   Wigner’s 1960 paper,   “The unreasonable 
 effectiveness of mathematics in the natural sciences”. 

If mathematical systems have an ideal existence outside of space and time, 
physical systems exist  in space time, no reason they should be related. 

Would  like to change topic and discuss briefly recent work. 

Led me to consider possible existence of a coherent theory of physics 
 and mathematics together as a coherent whole rather than 
  as separate entities. 

Work in last decades has been with a  goal of developing and 
 understanding aspects of such a theory 



Approach to coherent theory taken here: 

Framework is that of local vector spaces: 
 A  vector space is associated with each point of space  time. 

Based on mathematical framework used in gauge theories, 
 Extending  framework to other areas of physics and geometry. 

Vector spaces are closely associated with scalars, 
 Closed under scalar vector multiplication,  Norms 
Seemed strange that local sets of scalars were not included. 
 One global set of scalars for local vector spaces. 



Approach to coherent theory taken here: 

Framework is that of local vector spaces: 
 A  vector space is associated with each point of space  time. 

Based on mathematical framework used in gauge theories, 
 Extending  framework to other areas of physics and geometry. 

Vector spaces are closely associated with scalars, 
 Closed under scalar vector multiplication,  Norms 
Seemed strange that local sets of scalars were not included. 
 One global set of scalars for local vector spaces. 

Framework extension:: Associate a  set of scalars for the vector space 
 with each point of space time. 

Real vector spaces ¹Rx £ ¹Vx
Complex vector spaces (Hilbert spaces) ¹Cx £ ¹Vx:

What corresponds to gauge freedom for the scalars? 
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To answer this question must have some idea of  
 what mathematical systems are.  

Take description from mathematical logic that mathematical   
 systems  of different types are structures  or models.  

A structure or model for a system of a given type consists of a base set, a 
few basic operations, relations, and constants.  Axioms relevant for  
 the structure type must be true. 
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To answer this question must have some idea of  
 what mathematical systems are.  

Take description from mathematical logic that mathematical   
 systems  of different types are structures  or models.  

A structure or model for a system of a given type consists of a base set, a 
few basic operations, relations, and constants.  Axioms relevant for  
 the structure type must be true. 

Natural numbers: ¹N = fN;+;£; <; 0; 1g
Real numbers: ¹R = fR;§;£;¥; <; 0; 1g
Complex numbers: ¹C = fC;§;£;¥; 0; 1g
Vector space: ¹V = fV;§; ¢; j ¡ j; Ág

Structures for many other types of mathematical systems

Examples of structures 



Number and number value. 
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Natural number model:

Set, N that is discretely well ordered

with no maximal element.

Elements of N are numbers.

Value determined by position in well ordering.

First element, value 0, second element, value 1, etc.

N2, subset of N with every other element of N .

Inherits well ordering of N .

First element of N2 value 0, second element value 1, etc.

Number with value 1 in N2 has value 2 in N .

Number with value n in N2 has value 2n in N .

Values of numbers in ¹Nn = fNn;+n;£n; <n; 0n; 1ng
Scaled by factor of 1=n relative to values of numbers Nn in ¹N

where ¹N = fN;+;£; <; 0; 1g:



Shows numbers as base set elements have no intrinsic value 
 Value determined by mathematical environment  
 Concepts of number and number value are distinct. 
 
This distinctness extends to other number types. 
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This completes summary of number scaling 
 Explore  effects on some physical and geometric quantities 



What corresponds to gauge freedom for the scalars? 

Freedom of choice of scaling factors at di®erent space time points.

Introduce complex scalar scaling ¯eld, g,

where g(x) complex number value.

Purpose of g: to give complex number scaling factor,

g(x); for each point x of space time.

Let Á be vector ¯eld where for each x,

Á(x) is a vector value in ¹V
g(x)
x :

Gauge theories 



What corresponds to gauge freedom for the scalars? 

Freedom of choice of scaling factors at di®erent space time points.

Introduce complex scalar scaling ¯eld, g,

where g(x) complex number value.

Purpose of g: to give complex number scaling factor,

g(x); for each point x of space time.

Let Á be vector ¯eld where for each x,

Á(x) is a vector value in ¹V
g(x)
x :

Gauge theories 

Follow ususal steps in gauge theory to get covariant derivative,

D¹;xÁ = (@¹;x +
@¹;xg(x)

g(x)
)Á(x):

Replace g(x) by its equivalent expression

g(x) = e°(x) = e®(x)+i¯(x)

®(x); ¯(x) real valued scalar ¯elds.

D¹;x becomes

D¹;x = (@¹;x +A¹(x) + iB¹(x))Á:
~A; ~B gradients of ®; ¯:



Abelian gauge theory, QED 

Covariant derivative with photon field  P included is 

D¹;xÁ = (@¹;x + caA¹(x) + icbB¹(x) + icpP¹(x))Á:

ca; cb; cp are coupling constants.

Invariance of terms in QED Lagrangian

under local U(1) = eiµ(x) gauge transformations

places no mass restrictions on ~A:

Mass of ~B must be 0 if it shares with ~P

some of invariance breaking term, @¹;xµ(x):

Otherwise any mass is possible.



Abelian gauge theory, QED 

Covariant derivative with photon field  P included is 

D¹;xÁ = (@¹;x + caA¹(x) + icbB¹(x) + icpP¹(x))Á:

ca; cb; cp are coupling constants.

Invariance of terms in QED Lagrangian

under local U(1) = eiµ(x) gauge transformations

places no mass restrictions on ~A:

Mass of ~B must be 0 if it shares with ~P

some of invariance breaking term, @¹;xµ(x):

Otherwise any mass is possible.

Physical properties, restrictions on ®; ¯ ¯elds.

Both are scalar, spin 0 ¯elds.

Great accuracy of QED without ®; ¯ ¯elds

requires coupling constants, ca; and probably cb
to be very small relative to ¯ne structure constant,

or ~A, ~B ' 0 in local region of space and time.



Extensions of number scaling by g field  
 to other areas of physics and geometry. 

Based on:  
 Use of mathematical framework of  local scalar, vector space 
  structures in other areas of physics, geometry. 
 Freedom of choice of scaling factors  as shown in scaling g field. 
 Treatment of integrands of integrals over space, time, or space time 
  as fields as in gauge theory.  



Extensions of number scaling by g field  
 to other areas of physics and geometry. 

Based on:  
 Use of mathematical framework of  local scalar, vector space 
  structures in other areas of physics, geometry. 
 Freedom of choice of scaling factors  as shown in scaling g field. 
 Treatment of integrands of integrals over space, time, or space time 
  as fields as in gauge theory.  

Quantum mechanics, nonrelativistic 

Integral not de¯ned:

Implies sum of vectors in di®erent Hilbert spaces.

Remedied by use of connection to map

¯eld values to vector values in ¹H
g(x)
x

at reference location, x:



¹H
g(x)
x £ ¹C

g(x)
x

¹C
g(y)
y £ ¹H

g(y)
y g

¸

¸(x)

¸(y)

x
y

Space

g(y)

g(x)
¸(y)f

Connection

Reference point



Ãg =
R
x
¸g;x(y)dy =

1
g(x)

R
x
g(y)Ã(y)jyidy:

Resulting expression:

Expression with scaling results from treating integrand in Ã

like a vector ¯eld in gauge theory. For each location y

¸(y) = Ã(y)jyi is a vector value in ¹H
g(y)
y :

¸ is globally valued ¯eld.

Usual expression with no scaling is obtained by

letting ¸(y) be vector value in ¹H
g(x)
x :

¸ is locally valued ¯eld.
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x
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1
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R
x
g(y)Ã(y)jyidy:

Resulting expression:

Expression with scaling results from treating integrand in Ã

like a vector ¯eld in gauge theory. For each location y

¸(y) = Ã(y)jyi is a vector value in ¹H
g(y)
y :

¸ is globally valued ¯eld.

Usual expression with no scaling is obtained by

letting ¸(y) be vector value in ¹H
g(x)
x :

¸ is locally valued ¯eld.

Momentum of scaled ¯eld given by

~p¸g;x(y) = i¹hg(y)
P

j(¡j(y) + @j;y)¸(y):

~¡ = ~A+~iB gradient ¯eld of ° where

g(y) = e°(y) = e®(y)+i¯(y):
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Treatment of path as a field, as in gauge theory 
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H.A.Smith, “Alone in the Universe”  Amer. Scientist,  99(4),320, (2011) 



H.A.Smith, “Alone in the Universe”  Amer. Scientist,  99(4),320, (2011) 

M. Rinaldi, “Higgs, dark energy”, arXiv:1404.0532v4 
M. Czachor, “Dark energy as a manifestation of nontrivial arithmetic,”  
  arXiv:1604.05738 



Summary 
Described  early days of quantum computing. 
       Showed   existence of  theoretical models of  
 Quantum Turing  machines that do not dissipate energy.. 
       Described reactions of those who did not believe that 
 dissipationless  computing  was possible 
       Noted explosion of interest when Shor’s algorithm appeared.  

Briefly described recent work on effect  of scaling field on physics, geometry. 
         Based on separation of concepts of number and number value,   
 inclusion of local scalars with local vector spaces    
          Showed that freedom of choice of scaling factor  for scalars could be 
        included as scalar scaling field. 

Effects of scaling field on physical, geometric quantities determined by  
 treating quantities,  such as integrands, paths,  
  like fields in gauge theory 

Physical restrictions on scaling fields, α, β. 
  α, β  spin 0, and any mass possible for α, maybe same for β.  
Either coupling constants of fields very small or  
 Fields almost constant in local region of space, time. 
  Outside region, no restrictions on values. 
  


