

COMPASS

MESON PDFs – status at COMPASS and future options

Stephane Platchkov

Paris-Saclay University, CEA/IRFU, France

COMPASS@CERN : FACILITY FOR QCD STUDIES

- Hadron spectroscopy, chiral dynamics
 - Mainly light mesons domain
 - With hadron (and muon) beams

- Hadron Structure
 - 5-dim. structure of the hadron(s)
 - With muon and hadron beams

COMPASS is an old experiment - already two "phases"

- COMPASS I : 2002 2011
 - Longitudinally polarized DIS and SIDIS
 - Transversely polarized SIDIS
 - Hadron spectroscopy and chiral dynamics
- COMPASS II : 2012 2018
 - Primakoff studies (2012)

- Hadrons
- DVCS and Meson-production (2016, 2017) Muons
- Polarized Drell-Yan process (2015, 2018)

CERN accelerator complex

CERN M2 beam line

Abbon et al., NIM A779 (2015) 69-115

IRFU

Beams at COMPASS:

- muons: μ^+ , μ^- ,
- hadrons: $h^+(p, \pi^+, K^+)$, $h^-(\pi^-, K^-\bar{p})$

SPS

- electrons: e⁻
- 1 or 2 spills of 5 s every 33-48 sec

Beam particle identification

6

The two CEDARs are located upstream of the COMPASS experimental hall

COMPASS : a large, fixed-target, versatile setup

- ♦ COMPASS apparatus
 - Built for detecting several particles in the final state
 - Two spectrometers: Small-angle and Large-angle large and flat acceptance

50 m

Polarized target

Beam

"Minor" changes to the setup – switch between various physics programs

COMPASS polarized target

- Polarized target with two 55 cm long cells (for DY); three cells for SIDIS
- Superconducting magnets: solenoid + dipole
- Target filled with ammonia (NH₃) solid beads; also available: ⁶LiD
- Polarization in longitudinal mode, data is taken in transverse mode
- Polarization is periodically reversed

COMPASS – Drell-Yan setup

◆ Large hadron absorber, with a central Tungsten plug

Drell-Yan – interlude the COMPASS most recent result

Polarized Drell-Yan – a tool to access TMD PDFs

0

- Goal of nucleon structure studies: distributions of partons inside the nucleon; understand their internal dynamics
 - Study PDF as a function of both x and b_{\perp} (GPDs) or x and k_{T} (TMDs)
- TMDs: can be accessed both in SIDIS and Drell-Yan:

- ◆ Collinear factorization: short distance cross-section [⊗] the universal long-distance PDFs
 - TMD factorization: generalization for partons with transverse momentum components

Collins, Soper, Sterman, Adv. Ser. High En Phys. 5, 1988 + arXiv:hep-ph/0409313

 $xp_{\star}k_{T}$

Transverse Momentum Dependent PDFs

• 8 TMDs at leading twist

Sign change for Sivers and BM TMDs

Sivers and BM TMDs are process-dependent (modified universality) If the QCD factorization is correct, the sign of Sivers and BM TMDs should change

COMPASS

Leading twist asymmetries in transversely polarized DY/SIDIS

The four asymmetries are simultaneously extracted from either SIDIS or DY data

CSTS, April 19, 2017

13

COMPASS

Di-muon sample – some results from 2015

First Transverse Spin Asymmetries (TSA) results

Averaged TSAs for 2015 data

Preprint CERN-EP-2017-059, arXiv: 1704.00488, subm. PRL

Density PDF $(\pi) \otimes$ Sivers (p)

Higher twist asymmetries

BM PDF (π) \otimes Pretzelosity (p)

BM PDF (π) \otimes Transversity (p)

Integrated Sivers asymmetry is positive (within one sigma) Transversity is negative (two sigma), Pretzelosity positive (one sigma)

error

COMPASS

Final Sivers asymmetry

Meson PDFs – status and further options

In collaboration with Wen-Chen Chang, Jen-Chieh Peng and Takahiro Sawada

Pion valence PDF – Available data

Note: up to 20% difference between NA3/NA10 and E615 Three "global fit" parametrizations:1989

Argonne, PIEIC 2017

18

COMPAŠS

Pion global fit – SMRS (1992)

- SMRS : fit at NLO
 - valence quarks: data from NA3, NA10, E615
 - sea: vary from 5% to 20% of the total pion momentum
 - gluons: use $\pi p \rightarrow \gamma X$ data from WA70 (1989)
 - Parametrize PDFs:

$$xV_{\pi} = A_{V}x^{\alpha}(1-x)^{\beta} ,$$

$$xS_{\pi} \equiv 2x(u+\overline{d}+\overline{s}) = A_{s}(1-x)^{\eta_{s}} ,$$

$$xg = A_{g}(1-x)^{\eta_{g}} ,$$

- First moments @4 GeV²
 - valence: 0.47
 - sea: 0.10 0.20
 - gluons: 0.43 0.33

Sutton, Martin, Roberts and Strirling, PRD 45, 2349 (1992).

Argonne, PIEIC 2017

19

Pion global fits – GRV/S: 1992, 1998, 1999

- GRV inputs (NLO):
 - 1992: π -induced DY from NA3, NA10, E615
 - 1999: Constituent Quark Model constraints
 - Gluons: π-induced prompt photon data

GRV: Z Phys C53, 651 (1992).

GRS: Eur Phys J C10, 313 (1999).

The two global fits are non-consistent

Argonne, PIEIC 2017

IRFU

Pion PDF: agreement with theory?

- Pion PDF : parametrized as: $\sim Ax^{\alpha}(1-x)^{\beta}$
 - Large x: the fall-off is described by the slope parameter β .
 - NA3: $\beta = 1.17$
 - E615: β = 1.26
 - SMRS: $\beta = 1.08$
 - GRS: $\beta = 1.05$
 - Const Quark Mod: $\beta < 2.0$
 - However: pQCD (Brodsky), DSE: $\beta \ge 2.0$
 - DSE (C. Roberts et al.,) $\beta = 3.0$

Slope can be re-measured

Medium x: data accuracy is not good enough

Pion (valence) PDF – reanalysis with NLL resummation (2010)

- New analysis of E615 data
 - NLO, NLL
 - sea + gluons: from GRSh 1999 😕
 - take into account nuclear effects
 - Valence PDF:

 $xv^{\pi}(x) = Nvx^{\alpha}(1-x)^{\beta}(1+\gamma x^{\delta})$

Falloff at Q = 4 GeV: β = 2.34 ~ agreement with pQCD, DSE

Aicher, Schäfer and Vogelsang, PRL 105, 252003 (2010).

NLL: makes the valence distribution softer at high *x*

Data and (some of the) present calculations of the pion PDF

IRFU

E615: 36 000 events

- ◆ Data (see also Jen-Chieh's talk)
 - E615 only pseudo data (LO) available, 1989
 - NA3,1983 and NA10, 1985
- ♦ Global fits
 - SMRS, 1992
 - GRV/GRS, 1992 1999
- ♦ Re-analysis
 - NLO : Wijesoorija, Reimer, Holt, 2005
 - NLO/NLL : Aicher, Shaffer, Voglesang, 2010
- Model calculations
 - DSE : Nguyen et al., 2011, Chen et al., 2016
 - LFCM : Pasquini et al., 2014
 - NLChQM: Nam, 2012

0.3

- COMPASS features
 - Better statistics on NH₃, and also W:
 - E615: 36 000; Compass 2015+2018: up to ~150 000 (x4); and about ~300 000 events on W.
 - Very good x_F resolution (~0.01)
 - Better acceptance ; large x_F coverage

Needed is also : state-of-the-art analysis (NNLO / NLL)

IRFU

Acceptances : COMPASS vs NA10 vs E615

. Platchkov

Argonne, PIEIC 2017

25

*COMP*ASS

Can we measure the pion sea?

Pion sea determination – NA3 results (1983)

- First measurement: NA3
 - Target: ¹⁹⁵Pt
 - Beam : π (4.7k) and π + (1.7k) at 200 GeV
- Analysis (LO)
 - Assume SU(2) and SU(3) symmetry
 - Nucleon PDF: from CDHS (1979)
 - Determine valence pion: $Ax^{\alpha}(1-x)^{\beta}$
 - Determine sea pion $B(1-x)^{\gamma}$
- Drawbacks
 - Statistics: only 1700 events
 - Analysis: old nucleon PDFs, only LO

There is much room for an improvement

Valence sea separation in the pion

- Use positive and negative pion beams : possible only at CERN
- Drell-Yan cross sections for each polarity:

$$\sigma(\pi^{+}p) \approx \frac{4}{9} \Big[u_{v}^{\pi}(x) \cdot \overline{u}_{s}^{p}(x) \Big] + \frac{4}{9} \Big[\overline{u}_{s}^{\pi}(x) \cdot u_{v}^{p}(x) \Big] + \frac{1}{9} \Big[\overline{d}_{v}^{\pi}(x) \cdot d_{v}^{p}(x) \Big] + \frac{1}{9} \Big[d_{s}^{\pi}(x) \cdot \overline{d}_{s}^{p}(x) \Big]$$

$$\sigma(\pi^{-}p) \approx \frac{4}{9} \Big[\overline{u}_{v}^{\pi}(x) \cdot u_{v}^{p}(x) \Big] + \frac{4}{9} \Big[u_{s}^{\pi}(x) \cdot \overline{u}_{s}^{p}(x) \Big] + \frac{1}{9} \Big[\overline{d}_{s}^{\pi}(x) \cdot d_{v}^{p}(x) \Big] + \frac{1}{9} \Big[d_{v}^{\pi}(x) \cdot \overline{d}_{s}^{p}(x) \Big]$$

$$val-val \qquad sea-sea \qquad sea-val \qquad val-sea$$
assume SU(2) and charge invariance

- assume SU(2) and charge invariance
- Two linear combinations :

• Sea :

• Valence:

 $\Sigma_{sea}^{\pi D} = 4\sigma^{\pi^{+}D} - \sigma^{\pi^{-}D}$ no vale $\Sigma_{val}^{\pi D} = -\sigma^{\pi^{+}D} + \sigma^{\pi^{-}D}$ only vale

Londergan, Liu and Thomas, PL B361, 110 (1995).

no valence-valence terms

only valence-valence terms

Appropriate combinations select valence or sea terms

RFU

Valence-sea separation in the pion

- ♦ Assumptions
 - Sea contribution not known: assume from 5% to 20% (as in SMRS)
- Requirements :
 - Need π^- and π^+ beams
 - Need an isoscalar target (D)
 - Need a good σ normalization
 - Knowledge of the nucleon PDFs
- Form the ratio: $R_{S/V} = \frac{\Sigma_{sea}^{\pi D}}{\Sigma_{val}^{\pi D}}$,

Londergan, Liu and Thomas, PL B361, 110 (1995).

29

COMPAŠS

Single out the sea with π^+/π^- beams ?

- Possible new experiment
 - Hadron intensity: 8x10⁷ s⁻¹ (as present)
 - Target: C or ²D, same Luminosity as in 2015
 - Large and flat acceptance down
- ◆ BUT: 😕
 - π^+ cross section smaller than π^- (x ~1/2)
 - pion fraction in the beam smaller

Momentum (GeV/c)	Positive beams			Negative beams		
	π^+	K^+	р	π^-	K^{-}	p
100 160	0.618 0.360	0.015 0.017	0.367 0.623	0.958 0.966	0.018 0.023	0.024 0.011
190	0.240	0.014	0.746	0.968	0.024	0.008
200	0.205	0.012	0.783	0.969	0.024	0.007

Compromise between higher energy (low x_1) and π + fraction in the beam

In one "year" (5 months), an order of magnitude better statistics can be collected

IRFU

What about kaon PDFs?

dN /dx, |K⁻

۲Ħ ¥ ب

d N / d x | T

1.0

0.8

0.6

0.4

0

0

0.2-4.1 ≤ M ≤ 8.5

0.2

0.4

Platchkov

• The cross section ratio for K⁻ and π^- beams is proportional to:

A single measurement (NA3) from 1983

 $\overline{u}^{K^{-}}(x)/\overline{u}^{\pi^{-}}(x)$

- At large x, the kaon $\overline{u}(x)$ is smaller than the pion $\bar{u}(x)$
- The heavier *s* quark carries a larger fraction of the kaon momentum

Badier et al, PL 93B, 355 1980. π^- or K^- on a Pt target $(x_1)/I(x_1)$ NA3 0.2 0.4 0.6 0.8 1.0

700 events K

0.6 0.8

 π

1.0 X₁

21220 "

х1

COMPASS

32

Nambu-Jona-Lasinio model

Hauturuk, Cloët and Thomas, Phys. Rev. C 94, 035201 (2016).

Dyson-Schwinger Equation

Gluon PDF for kaons (see Craig's talk)?

- ◆ From Chen Chen et al., 2016 (BS + DSE)
 - Derive valence distributions
 - Incorporate sea and gluons.
 - Evolve.
 - Fit $u(K)/u(\pi)$ ratio and adjust the gluon PDF.
- Chen et al. conclusion:
 - At the hadronic scale gluons carry only 5% of the momentum of the kaon
 - At the hadronic scale gluons carry only 35% of the momentum of the pion

=> Another good reason for a measurement of the kaon PDFs using a RF-separated beam

IRFU

Valence sea/separation in the kaon

Platchkov

Argonne, PIEIC 2017

35

IRFU

How to measure g(x) directly?

Gluon PDFs – method-1 : J/psi production

• J/psi are produced through two processes: $q\bar{q}$ and gg (+g)

- π induced J/psi production
 - \Rightarrow gluon PDF: $xG(x) = A(1-x)^{\beta}$
 - NA3 (150, 200 GeV)
 - E537 (125 GeV),
 - WA11 (McEwen, 1983, 190 GeV),
 - NA10 (Y prod)

ß parameter: varies from 1.20 to 2.38

Large statistics, but difficult interpretation

IRFU

Gluon PDFs – method-2 : direct photon production

- High-pt prompt photons in $\pi + p \rightarrow \gamma + X$ (π^+ and π^- beams)
 - two processes: $qg \rightarrow \gamma q$ and $qq \rightarrow \gamma q$
 - Data from WA70 (CERN) at 280 GeV (1989)
 - Intensity : ~2x10⁷ pions/spill
 - 1 m long H target
 - $4.0 < p_T < 7.0 \text{ GeV}$
 - Cross section ratio dominated by: $qg \rightarrow \gamma q$
 - Analysis by Aurenche et al., 1989
 - Used in SMRS -1992

Results for xG(x) depend on the assumptions about valence and sea π^+/π^- and K⁺/K⁻ beams are available only at CERN !

RF-separated beams

- ◆ Idea: Panofsky and Wenzel, 1956
- Studies for Triumph (~1998) and at CERN (~2005) for rare kaon decay experiments
- Method:
 - particles with same momenta have different velocities small TOF differences
 - produce a time-dependent transverse kick with RF cavities
 - select particles by the phase space difference:

 $\Delta \Phi = 2\pi (\mathrm{Lf/c})(\beta_1^{-1} - \beta_2^{-1})$

- available length at CERN: up to 900 meters
- working frequency: 3.9 GHz

J. Doornbos, NIM A455, 253 (2000)

Example: preliminary estimates for antiprotons and kaons

Studies underway at CERN

J. Bernhard, IWHSS Cortona, 2-5 April 2017

- Some assumptions:
 - L = 450 m, f = 3.9 GHz, beam spot within 1.5 mm
 - Reasonable primary target efficiency, 80% wanted particles pass dump
 - Number of primary protons: 100 400x10¹¹ ppp on the production target

• Energy limitation : 120 GeV

Large improvement in flux with purity of the order of 50%

Argonne, PIEIC 2017

IRFU

CERN strategy : support physics other than LHC

- "Physics Beyond Colliders" initiative meetings Sept. 6/7, 2016; March 1st 2017
 - Initiated by CERN' DG as part of the CERN's future
 - Exploit the full potential of CERN's accelerator complex; complement the LHC programme
 - Set working groups with deliverables for each project that include:
 - evaluation of the physics case
 - detector building and optimizations
 - CERN's uniqueness
 - Physics QCD subgroup (among others) :
 - COMPASS++, LHC Fixed-target, other experiments....
 - Conventional beams subgroup
 - comprises studies for RF-separated beams fro COMPASS

Deliverables due end 2018

In time for the European Strategy for Particle Physics update in 2019/2020

Info at: http://pbc.web.cern.ch//

RFU

Platchkov

Letter of Intent writing has started. Ideas and contributions from people outside COMPASS more than appreciated Argonne, PIEIC 2017

Timelines (meson PDFs only)

- ◆ Present: (2015 and 2018) data improved knowledge:
 - Pion valence PDF
 - Kaon/Pion u(x) ratio measurement: with an upgraded beam identification (CEDAR) in 2018 Future options _____
- Near future (No RF needed): 1 year $\pi + /\pi -$ run immediately after LS2
 - valence sea separation of the pion PDFs
 - direct photon production : measurement of $g_{\pi}(x)$
- RF separation: dedicated runs with an intense kaon beam
 - Kaon valence PDF
 - Kaon sea and/or valence strange distribution
 - Direct photon production : measurement of $g_{K}(x)$

Compass

New experiment

New experiment

