## Meson Structure from Dilepton Production

Jen-Chieh Peng

University of Illinois at Urbana-Champaign

Workshop on "Pion and Kaon Structure at an Electron-Ion Collider" ANL, June 1-2, 2017

In collaboration with Wen-Chen Chang, Stephane Platchkov and Takahiro Sawada

# <u>Outline</u>

- Overview of Drell-Yan experiments with meson beams
- What have we learned from these experiments
- What we would like to learn in the future
- Summary

## First Dimuon Experiment



 $p+U \rightarrow \mu^+ + \mu^- + X$  29 GeV proton Lederman et al. PRL 25 (1970) 1523 Experiment originally designed to search for neutral weak boson (Z<sup>0</sup>) Missed the J/ $\Psi$  signal ! "Discovered" the Drell-Yan process

## The Drell-Yan Process

#### MASSIVE LEPTON-PAIR PRODUCTION IN HADRON-HADRON COLLISIONS AT HIGH ENERGIES\*

Sidney D. Drell and Tung-Mow Yan

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

(Received 25 May 1970)



$$p + p - (\mu^+ \mu^-) + \cdots$$
 (1)

Our remarks apply equally to any colliding pair such as (pp),  $(\overline{p}p)$ ,  $(\pi p)$ ,  $(\gamma p)$  and to final leptons  $(\mu^+\mu^-)$ ,  $(e\overline{e})$ ,  $(\mu\nu)$ , and  $(e\nu)$ .

(4) The full range of processes of the type (1) with incident p,  $\overline{p}$ ,  $\pi$ , K,  $\gamma$ , etc., affords the interesting possibility of comparing their parton and antiparton structures. (In particular no rela-

## List of Drell-Yan experiments with $\pi^-$ beam

| Exp       | P (GeV)       | targets              | <b>D-Y events</b>                     |
|-----------|---------------|----------------------|---------------------------------------|
| WA11      | 175           | Be                   | 500 (semi-exclusive)                  |
| WA39      | 40            | W (H <sub>2</sub> )  | 3839 (all beam, M > 2 GeV)            |
| NA3       | 150, 200, 280 | Pt (H <sub>2</sub> ) | 21600, 4970, 20000 (535, 121, 741)    |
| NA10      | 140, 194, 286 | W (D <sub>2</sub> )  | ~84400, ~150000, ~45900 (3200,, 7800) |
| E331/E444 | 225           | C, Cu, W             | 500                                   |
| E326      | 225           | W                    |                                       |
| E615      | 80, 252       | W                    | 4060, ~50000                          |

# List of Drell-Yan experiments with $\pi^+$ beam

| Exp       | P (GeV) | targets              | <b>D-Y</b> events |
|-----------|---------|----------------------|-------------------|
| WA39      | 40      | W (H <sub>2</sub> )  |                   |
| NA3       | 200     | Pt (H <sub>2</sub> ) | 1750 (40)         |
| E331/E444 | 225     | C, Cu, W             |                   |

## Drell-Yan experiments with $K^-$ beam

| Exp  | P (GeV)  | targets             | <b>D-Y</b> events |
|------|----------|---------------------|-------------------|
| WA39 | 40       | W (H <sub>2</sub> ) |                   |
| NA3  | 150, 200 | Pt                  | 688, 90           |

# Drell-Yan experiments with $K^+$ beam

| Exp  | P (GeV) | targets             | <b>D-Y</b> events |
|------|---------|---------------------|-------------------|
| WA39 | 40      | W (H <sub>2</sub> ) |                   |
| NA3  | 200     | Pt                  | 170               |

## Drell-Yan experiments with $\bar{p}$ beam

| Exp  | P (GeV)  | targets             | <b>D-Y</b> events |
|------|----------|---------------------|-------------------|
| WA39 | 40       | W (H <sub>2</sub> ) |                   |
| NA3  | 150, 200 | Pt                  | 275, 32           |
| E537 | 125      | W, Cu, Be           | 380               |

## Ratios of $(\pi^- + A)/(p + A)$ Drell-Yan cross sections



## Ratios of $(\pi^+ + C)/(\pi^- + C)$ Drell-Yan cross sections



## $(\pi^- + W)$ versus $(\pi^+ + W)$ Drell-Yan cross sections



## $(\pi^- + W)$ versus $(\overline{p} + W)$ Drell-Yan cross sections



Valence quark *x*-distribution in pion is broader than that in proton

#### Ratios of $(K^- + D) / (\pi^- + D)$ Drell-Yan cross sections $V_{\pi}(x) = d_{\pi^{-}}^{V}(x) = \overline{u}_{\pi^{-}}^{V}(x)$ dN /dx, | # 1.0 $S_{\pi}(x) = u_{\pi^{-}}(x) = \overline{d}_{\pi^{-}}(x)$ 0.8 $V_{K}^{u}(x) = \overline{u}_{K^{-}}^{V}(x); \quad V_{K}^{s}(x) = s_{K^{-}}^{V}(x)$ 0.6 F × $S_{K}(x) = u_{K^{-}}(x) = \overline{d}_{K^{-}}(x) = s_{K^{-}}(x)$ 0.4 0.2-4.I ≤ M ≤ 8.5 $V_N(x) = [u_n^V(x) + d_n^V(x)]/2$ 0 $S_N(x) = [\overline{u}_p(x) + \overline{d}_p(x)]/2$ 0.2 0.4 0.8 I.O X 0.6 From NA3; 150 GeV, Pt target Ignoring the sea-sea terms: $R = \frac{\sigma_{DY}(K^- + D)}{\sigma_{DY}(\pi^- + D)}$ $4V_{K}^{u}(x_{1})V_{N}(x_{2}) + 4V_{K}^{u}(x_{1})S_{N}(x_{2}) + V_{K}^{s}(x_{1})S_{p}(x_{2}) + 5S_{K}(x_{1})V_{N}(x_{2}) \sim V_{K}^{u}(x_{1})$ $4V_{\pi}(x_1)V_{N}(x_2) + 5S_{\pi}(x_1)V_{N}(x_2) + 5V_{\pi}(x_1)S_{N}(x_2)$ $V_{\pi}(x_1)$

 $R \simeq (1-x)^{0.18\pm0.07} \Rightarrow$  softer *u*-valence than *s*-valence in kaon

## Difference of $(\pi^- + D)$ and $(\pi^+ + D)$ Drell-Yan cross sections

Defining  

$$V_{\pi}(x) = u_{\pi^{+}}^{V}(x) = \overline{d}_{\pi^{+}}^{V}(x) = d_{\pi^{-}}^{V}(x) = \overline{u}_{\pi^{-}}^{V}(x)$$
  
 $S_{\pi}(x) = u_{\pi^{-}}(x) = \overline{d}_{\pi^{-}}(x) = d_{\pi^{+}}(x) = \overline{u}_{\pi^{+}}(x)$   
 $V_{N}(x) = [u_{p}(x) + d_{p}(x)]/2$   
 $S_{N}(x) = [\overline{u}_{p}(x) + \overline{d}_{p}(x)]/2$ 

 $\sigma_{DY}(\pi^{-} + D) \propto 4V_{\pi}(x_{1})V_{N}(x_{2}) + 5S_{\pi}(x_{1})V_{N}(x_{2}) + 5V_{\pi}(x_{1})S_{N}(x_{2}) + 10S_{\pi}(x_{1})S_{N}(x_{2})$  $\sigma_{DY}(\pi^{+} + D) \propto V_{\pi}(x_{1})V_{N}(x_{2}) + 5S_{\pi}(x_{1})V_{N}(x_{2}) + 5V_{\pi}(x_{1})S_{N}(x_{2}) + 10S_{\pi}(x_{1})S_{N}(x_{2})$ 

$$\sigma_{DY}(\pi^- + D) - \sigma_{DY}(\pi^+ + D) \propto 3V_{\pi}(x_1)V_N(x_2)$$

Only the valence-quark term remain!

• Only very low statistics data for  $\sigma_{DY}(\pi^+ + D)$  are available!

•  $\sigma_{DY}(\pi^+ + D)$  is more sensitive to pion's sea-quark content than  $\sigma_{DY}(\pi^- + D)!$ 

See Londergan et al., PL B361 (1995) 110

 $\sigma_{DY}(K^+ + D)$  is more sensitive to kaon's sea-quark content than  $\sigma_{DY}(K^- + D)$ (especially data at low  $x_1$  and large  $x_2$  (negative  $x_F$ ) region!)

See Londergan al., PL B380 (1996) 393

## Attemps to extract the pion valence quark distribution





15

## Attemps to extract the pion valence quark distribution



A global fit to all data is needed

- OW-P (PRD 30, 943 (1984))
  - LO QCD
  - J/Psi data from NA3 and WA39; D-Y data from E537 and NA3



17

- ABFKW-P (PL 233, 517 (1989))
  - NLO QCD
  - Direct photon data from WA70 and NA24;
     Sea-quark distribution from NA3



- GRV-P (Z. Phys. C53, 651 (1992))
  - LO and NLO QCD
  - Only valence and valence-like gluon at initial scale. Sea is entirely from QCD evolution





• SMRS-P (PR D45, 2349 (1992))

## – NLO QCD

– NA10 and E615 D-Y data,

WA70 direct photon data





#### Massive Lepton Pairs as a Prompt Photon Surrogate

Edmond L. Berger<sup>a</sup>, Lionel E. Gordon<sup>b,c</sup>, and Michael Klasen<sup>a</sup>



PR D58, 074012 (1998)

Dimuons at high  $p_T$  are dominated by quark-gluon process. They are senitive to pion's gluon distribution, just like direct-photon production



## $J/\Psi$ production in the Color Evaporation Model

- Use GRV for pion and kaon PDF and CTEQ5L for proton PDF
- Use same normalization factor for pion and kaon beams
- Take into account the proton and neutron numbers in the platinum target
- Compare the calculation with NA3 data





The  $K / \pi$  ratios of J/ $\Psi$  production at large  $x_F$  might indicate a softer  $\overline{u}$  in  $K^-$  than *s*, similar to the D-Y data?

## **Drell-Yan decay angular distributions**



 $h_1 + h_2 \rightarrow \gamma^* + x \rightarrow l^+ + l^- + x \ (q + \overline{q} \rightarrow \gamma^*)$ 

 $\Theta$  and  $\Phi$  are the decay polar and azimuthal angles of the  $\mu^+$  in the dilepton rest-frame **Collins-Soper frame** 

A general expression for Drell-Yan decay angular distributions:  $\left(\frac{1}{\sigma}\right)\left(\frac{d\sigma}{d\Omega}\right) = \left[\frac{3}{4\pi}\right]\left[1 + \lambda\cos^2\theta + \mu\sin2\theta\cos\phi + \frac{\nu}{2}\sin^2\theta\cos2\phi\right]$ 

"Naive" Drell-Yan (transversely polarized  $\gamma^*$ ,

no transverse momentum)  $\rightarrow \lambda = 1, \ \mu = 0, \ \nu = 0$ 

In general :  $\lambda \neq 1, \ \mu \neq 0, \ \nu \neq 0$ 

## Decay angular distributions in pion-induced Drell-Yan



Fig. 3a-c. Parameters  $\lambda$ ,  $\mu$ , and v as a function of  $P_r$  in the CS frame. a 140 GeV/c; b 194 GeV/c; c 286 GeV/c. The error bars correspond to the statistical uncertainties only. The horizontal bars give the size of each interval. The dashed curves are the predictions of perturbative QCD [3]

 $v \neq 0$  and v increases with  $p_T$ 

# Decay angular distributions in pion-induced Drell-YanE615 Data 252 GeV π<sup>-</sup> + WPhys. Rev. D 39 (1989) 92



 $\lambda \neq 1, \ \mu \neq 0, \ \nu \neq 0$  and they vary with  $m_{\mu\mu}, p_T$ , and  $x_{\pi}$ 

## Decay angular distributions in pion-induced Drell-Yan Is the Lam-Tung relation violated?



Data from NA10 (Z. Phys. 37 (1988) 545)

Violation of the Lam-Tung relation suggests interesting new origins (Brandenburg, Nachtmann, Mirkes, Brodsky, Khoze, Müller, Eskolar, Hoyer,Väntinnen, Vogt, etc.) Boer-Mulders function  $h_1^{\perp}$   $\bigcirc$  –  $\bigcirc$ 

- $h_1^{\perp}$  represents a correlation between quark's  $k_T$  and transverse spin in an unpolarized hadron (analogous to Collins function)
- $h_1^{\perp}$  is a time-reversal odd, chiral-odd TMD parton distribution



nucleon have same signs

30

# Can one test the predicted sign-change from DIS to D-Y for pion's B-M function?

1) From NA10 pion Drell-Yan data, one deduces that the product of the pion valence quark B-M function and the proton valence quark B-M function is positive. Using *u*-quark dominance, we have:  $h_{1u}^{\perp,DY}(p) * h_{1u}^{\perp,DY}(\pi) > 0$ 

Therefore, either a)  $h_{1,u}^{\perp,DY}(p) > 0$ ;  $h_{1,u}^{\perp,DY}(\pi) > 0$  (sign – change) or b)  $h_{1,u}^{\perp,DY}(p) < 0$ ;  $h_{1,u}^{\perp,DY}(\pi) < 0$  (no sign – change) 2) In polarized  $\pi - p$  D-Y, the  $\sin(\phi + \phi_s)$  modulation is sensitive to the sign of  $h_{1,u}^{\perp,DY}(\pi)$  (being measured at COMPASS) 3) Need to measure the sign of pion's B-M function in DIS

# HOW?

From TDIS to TSIDIS at EIC

TSIDIS (Tagged Semi-Inclusive DIS)

### TSIDIS

 $e^- + p \rightarrow e^{-\prime} + n + \pi^{\pm} + x$ 

underlying process:

 $e^- + \pi^+ \rightarrow e^{-\prime} + \pi^{\pm} + x$ 

An independent check of pion's PDF
 Could allow valence-sea flavor separation
 Detected π<sup>-</sup> is most likely from ū (or d) sea in π<sup>+</sup>
 Detected π<sup>+</sup> is most likely from valence u (or d) in π<sup>+</sup>

 Pion B-M function is extracted from cos 2φ modultion

Exclusive dilepton production in  $\pi N$  interaction  $\pi^- p \rightarrow \gamma^* n \rightarrow \mu^+ \mu^- n$ E. Berger, M. Diehl, B. Pire, Phys. Lett. B523 (2001) 265 Probe pion distribution amplitude  $(\phi_{\pi})$  and nucleon GPD  $(\tilde{H}, \tilde{E})$  $\gamma^*(q')$  $\pi(q)$ Bjorken variable  $\tau = \frac{Q'^2}{s-M^2}$ *x*+η skewness  $\eta = \frac{(p-p')^+}{(p+p')^+} = \frac{\tau}{2-\tau}$  $\widetilde{H}, \widetilde{E}$ N(p)N(p')(b)  $\frac{d\sigma}{dQ'^2 dt \, d(\cos \theta) \, d\varphi} = \frac{\alpha_{\rm em}}{256 \, \pi^3} \frac{\tau^2}{Q'^6} \sum_{\lambda',\lambda} |M^{0\lambda',\lambda}|^2 \sin^2 \theta$  $M^{0\lambda',\lambda}(\pi^- p \to \gamma^* n) = -ie \frac{4\pi}{3} \frac{f_{\pi}}{Q'} \frac{1}{(p+p')^+} \bar{u}(p',\lambda') \left[ \gamma^+ \gamma_5 \, \tilde{\mathcal{H}}^{du}(\eta,t) + \gamma_5 \frac{(p'-p)^+}{2M} \, \tilde{\mathcal{E}}^{du}(\eta,t) \right] u(p,\lambda)$  $\tilde{\mathcal{H}}^{du}(\eta,t) = \frac{8\alpha_S}{3} \int_{-1}^{1} dz \, \frac{\phi_{\pi}(z)}{1-z^2} \int_{-1}^{1} dx \, \left[ \frac{e_d}{-n-x-i\epsilon} - \frac{e_u}{-n+x-i\epsilon} \right] \left[ \tilde{H}^d(x,\eta,t) - \tilde{H}^u(x,\eta,t) \right]$ 

33

## DEMP versus exclusive dilepton production

$$\gamma^* + N \longrightarrow \pi + N'$$



space-like photon

$$\pi + N \to \gamma^* + N'$$

#### Exclusive Dilepton Production



### time-like photon

Longitudinally polarized dilepton is expected

$$\pi^- p \rightarrow \gamma^* n \rightarrow \mu^+ \mu^- n$$



$$\frac{d\sigma}{dQ'^2 dt \, d(\cos\theta) \, d\varphi} = \frac{\alpha_{\rm em}}{256 \, \pi^3} \frac{\tau^2}{Q'^6} \, \Sigma_{\lambda',\lambda} \, |M^{0\lambda',\lambda}|^2 \sin^2\theta$$

Crucial Test of the validity of the twist expansion Transversely polarized dilepton for inclusive Drell-Yan

## Evidence for longitudinally polarized dilepton in meson-induced Drell-Yan at large x?



As  $x_{\pi} \rightarrow 1$ , inclusive Drell-Yan becomes exclusive dilepton!

#### PHYSICAL REVIEW D 93, 114034 (2016)

Accessing proton generalized parton distributions and pion distribution amplitudes with the exclusive pion-induced Drell-Yan process at J-PARC



## Summary and future Prospect

- Pion valence-quark distribution
  - \* Need more data on  $\pi^- + D$  and  $\pi^- + p$  (to minimize nuclear effects)
  - \* Need more data on  $\pi^+ + D$  (to isolate valence quark distribution from  $\sigma(\pi^- + D) - \sigma(\pi^+ + D)$ )
- Pion sea-quark distribution
  - \* Need more data on  $\pi^+ + D$  at negative  $x_F$
- Pion gluon distribution
  - \* Need low-mass high  $p_T$  Drell-Yan data on  $\pi^+ + D$ (where q - G process dominates)

## Summary and future Prospect

- Kaon parton distributions
  - \* Need D-Y data on  $K^- + D$  and  $K^+ + D$  (see talk by Stephane Platchkov)
  - \* Need J/ $\Psi$  data on  $K^- + D$  and  $K^+ + D$  (to probe both the valence-quark and gluon distribution of kaon)
- Pion's Boer-Mulders function
  - \* Feasibility to measure TSIDIS at EIC?
  - \* Test sign-change prediction for pion B-M function?
- Exclusive Drell-Yan with  $\pi^-$  and  $K^-$  beams
  - \* Probe pion and kaon distribution amplitudes
  - \* First measurement seems feasible at J-PARC <sup>39</sup>