Reaction Models of Electromagnetic Meson Production in the Nucleon Resonance Region

> T.-S. Harry Lee Argonne National Laboratory

Data of γp reaction cross sections

1.4 1.6 1.8 2.0 2.2 2.4 σ/μbarn γp -> X 100 $\gamma p \rightarrow p \pi^+ \pi^$ γp->pη ππ 10 $\gamma\,p \Rightarrow p\, \pi^0\pi^0$ $\gamma p \rightarrow p \omega$ 1 $\gamma p \Rightarrow K^*$ γp -> p Φ K⁰ 0.1 $\gamma p \rightarrow p K^+K^-$ 2.5 1.5 0.5 2 3 0 1 E_//GeV

W/GeV

• Challenge :

Extensive data of electromagnetic production of π , η , K, ω , ϕ , and $\pi\pi N$ (ρN , $\pi\Delta$)

$\downarrow\downarrow\downarrow$

Understand the structure of nucleon resonances (N^*)

$\downarrow\downarrow\downarrow$

Understand non-perturbative QCD :

- Confinement of constituent quarks
- Chiral dynamics of meson cloud of baryons

```
• Traditional practice:
```

```
Amplitude Analyses of data

\rightarrow

Extract N^* parameters

No interpretation of N^* parameters
```

• Theoretical task :

Develop Dynamical Reaction Models

 \rightarrow

Extract N^* parameters

Also attempt to interpret N^* parameters in terms of QCD :

- Hadron Models (now)
- Lattice QCD (near future)

Question :

Why do we need reaction models ??

(difficult and complicated)

 \rightarrow

Answer :

Many-year's experiences in nuclear physics

Herman Feshbach :

"Much of the present-day understanding of *nuclear structure* has been gained from the study of *nuclear reactions*. For this purpose it is necessary to understand the dynamics of *nuclear reactions*, while at the same time methods must be developed that permit the extraction of *nuclear structure* information."

 \rightarrow

Develop reaction models

to separate *reaction mechanisms* from *nuclear structure*

(Optical potentials, DWIA, Coupled-channel, multiple-scattering etc.)

 \rightarrow

Replace $nuclear \rightarrow hadron$

Similar situation in the study of N^* structure

 \rightarrow

Develop reaction models

to separate *reaction mechanisms* from *hadron structure*

Question :

What could be wrong in using the information from amplitude analyses (Particle Data Group) to test theoretical models of N^* structure ?

 Analyses are often guided by numerical simplicity in many-parameters fits

Answer:

 \rightarrow

Results from the study of $N-\Delta$ transitions in the past 10 years

In a dynamical reaction model of $\gamma N \rightarrow \pi N$:

$$\bar{\Gamma}_{\gamma N \to \Delta} = \Gamma_{\gamma N \to \Delta} + \bar{\Gamma}_{\pi N \to \Delta} G_{\pi N}(E) v_{\gamma \pi}$$

 $\gamma N \rightarrow \Delta$ Magnetic Dipole $G_M(Q^2)$

• Pion cloud has a very large effect on G_M ; about 40% at $Q^2 = 0$

• At
$$Q^2 = 0$$
, $G_M^{bare} \sim G_M^{SU(6)} \sim 2$.
 \rightarrow
Resolve a *long-standing* puzzle !!

Possible Plan

This talk:

- Review the current reaction models of meson production reactions
- Report the status of a reaction model being developed by Argonne-Osaka-Schizuoka collaboration

(A. Matsuyama, T. Sato, T.-S. H. Lee)

General Consideration

Question :

What is the structure of N^* ?

Theoretical guidence:

Chiral symmetry in QCD is broken spontaneously

\rightarrow

 \rightarrow

 N^{\ast} can be described in terms of constituent quarks and meson clouds

$$|N^*>=|N_0^*>+|N_0^*\pi>+|N_0^*\pi\pi>+\cdots$$

 $\mid N_0^* > = \mid qqq >$

q = constituent quarks

 \rightarrow

 \rightarrow

A tractable reaction model is based on:

- each quark core (N_0^*) is treated as an elementary field ψ_B
- N_0^* structure is defined by form factors

data \rightarrow [form factors] \leftarrow hadron models/Lattice QCD

Starting Interaction Lagrangian :

$$L_I = \sum_{B,B'} \sum_M \bar{\psi}_{B'} [\Gamma^0 \phi_M] \psi_B$$

- $\psi_B =$ bare $N, \Delta, N_1^*, N_2^* \cdots$
- $\phi_M = \gamma, \pi, \eta, K, \omega, \phi \cdots$
- Γ^0 must be consistent with chiral symmetry :

$$L_I \sim \bar{\psi}_N [\gamma_5 \gamma^\mu \partial_\mu \phi_\pi] \psi_N + \cdots$$

Approximations:

- Ladder Bethe-Salpeter equations
 - I. Afnan and collaborators
 - N. Kaiser, E. Oset, M. Lutz et al
- Three-dimensional ladder Bethe-Salpeter equations
 - Julich coupled-channel model
 - F. Gross and Y.Suyra
 - Dubna-Mainz-Taipei (MAID-DMT) model (S.N. Yang)
 - V. Pascalutsa, J. Tjon, G. L. Caia, L. Wright
 - Many earlier πN models
- Unitary transformation method
 - T. Sato, A. Matsuyama, and T.-S. H. Lee
 - M. Fuda
 - B. Julia-Diaz W.-T. Chiang, B. Saghai, F. Tabakin, T.-S. H. Lee

Focus on :

Formulation based on unitary transformation method

\rightarrow

• Derive most of the current reaction models

Method of Unitary Transformation

- Start with a Lagrangian L(x) of relativistic quantum field theory
- Apply the canonical quantization to define Hamiltonian density

$$h(x) = \sum_{B} \pi_B(x) \partial_0 \psi_B(x) + \sum_{M} \pi_M(x) \partial_0 \phi_M(x) - L(x)$$

• Define Hamiltonian in Fock-space

$$H = \int d\vec{x} h(\vec{x}, \mathbf{t} = \mathbf{0})$$

• Apply unitary transformation to derive $H_{eff} = U^{\dagger}HU$ which leads to

Soluble few-body scattering equations

Example :
$$L_I = \overline{\psi}_{B'} \Gamma^0 \phi_M \psi_B$$
 ($B = N, \Delta, M = \pi, \gamma$)
 \rightarrow Hamiltonian :

$$H = H_0 + H_I + H_{em} \,,$$

with

$$H_{I} = \sum_{B,B'} \Gamma^{0}_{\pi B',B}$$
$$H_{em} = \int d\mathbf{x} A \cdot J$$

$$J^{\mu} = J^{\mu}_{\pi} + J^{\mu}_{B',B} + J^{\mu}_{B',B,\pi},$$

• Decompose interaction term :

$$H_I = H_1^P + H_1^Q ,$$

Physical process: $\Delta \leftrightarrow \pi N$

$$H_1^P = \Gamma^0_{\pi N, \Delta}$$

Unphysical process : $N \leftrightarrow \pi N$, $N \leftrightarrow \pi \Delta$, $\Delta \leftrightarrow \pi \Delta$

$$H_1^Q = \Gamma^0_{\pi N,N} + \Gamma^0_{\pi \Delta,N} + \Gamma^0_{\pi \Delta,\Delta}$$

• Introduce unitary transformations

 \rightarrow

$$U_n = \exp(iS_n)$$
$$S_n \propto (H_I)^n$$

$$H^{(n)} = U_n^{\dagger} U_{n-1}^{\dagger} \cdots H \cdots U_{n-1} U_n$$

= $H_{eff}(g^1, \cdots, g^n) + \sum_{m>n} [H^P(g^m) + H^Q(g^m)]$

 $H_{eff}(g^1, \cdots, g^n)$: no unphysical processes ($H_I \propto g$)

Consider n=2:

$$H = H_{eff}(g^1, g^2) = H_0 + V$$
$$V = v^{bg} + \sum_{N_i^*} [\Gamma_i + \Gamma_i^{\dagger}]$$

 v^{bg} : Non-resonant $MB \to M'B'$ $\Gamma_i : N^* \to MB$ \to

Scattering amplitude

$$T(E) = V + V \frac{1}{E - H + i\epsilon} V$$

Main Feature : V is energy-independent and hermitian

 \rightarrow

Unitarity condition is trivially satisfied.

n=2 interactions:

v^{bg} : Non-resonant $v^R = rac{\Gamma_i^\dagger \Gamma_i}{E - M_{N_i^*}}$: Resonant

Can derive

- Unitary Isobar Models : MAID Jlab/Yerevan UIM
- Multi-channel K-matrix models :
 SAID
 Giessen
 Kent State University (KSU)
- Carnegie-Mellon Berkeley (CMB) Model
- Dynamical reaction models

Starting point :

• Relation between scattering T and K matrix :

$$T(E) = V + V\left[\frac{P}{E - H_0} - i\pi\delta(E - H_0)\right]T(E)$$

$$K(E) = V + V \frac{P}{E - H_0} K(E)$$

P: the principal-value integration.

$$T(E) = K(E) - T(E)[i\pi\delta(E - H_0)]K(E)$$

 \rightarrow

 \rightarrow

Lead to on-shell relations between T and K

Approaches :

• Start with $V = v^{bg} + v^R$:

$$T_{a,b}(k_a, k_b, E) = V_{a,b}(k_a, k_b) + \sum_{c} \int dk \frac{V_{a,c}(k_a, k) T_{c,b}(k, k_b)}{E - E_{M_c}(k) - E_{B_c}(k) + i\epsilon}$$

a,b = πN , γN , ηN , ωN , KY, ρN , $\pi \Delta$, σN (represent $\pi \pi N$)

- Need off-shell information
- Equations for Dynamical Models

• Start with *K* matrix:

A matrix relation in partial-wave representation:

$$T_{a,b}(E) = \sum_{c} [(1 + iK(E))^{-1}]_{a,c} K_{c,b}(E)$$

a,b = πN , γN , ηN , ωN , KY, ρN , $\pi \Delta$, σN (represent $\pi \pi N$)

- Need only on-shell information
- Equations for K-matrix Models

Derivations

- Unitary Isobar Model (UIM) :
 - start with K matrix
 - channels : γN , πN (or ηN)

 \rightarrow

 $\gamma N \rightarrow \pi N$ amplitude :

$$T_{\pi N,\gamma N} = [1 + iK_{\pi N,\pi N}(E)]^{-1}K_{\pi N,\gamma N}(E)$$

$$= e^{i\delta_{\pi N}}\cos\delta_{\pi N}K_{\pi N,\gamma N}(E)$$

$$\sim e^{i\delta_{\pi N}}\cos\delta_{\pi N}V_{\pi N,\gamma N}$$

 $V_{\pi N,\gamma N} =$ Tree-diagrams $\delta_{\pi N}$: πN phase shifts \rightarrow

Satisfy Watson Theorem in W < 1.3 GeV

– MAID and Jlab/Yerevan UIM :

Include of N* by using Walker's parameterization
 Unitarize the total amplitude

 $T_{\pi N,\gamma N}(UIM) = e^{\delta} cos \delta[v_{\pi N,\gamma N}^{bg}] + \sum_{N_i^*} T_{\pi N,\gamma N}^{N_i^*}(W)$ $T_{\pi N,\gamma N}^{N_i^*}(E) = f_{\pi N}(W) \frac{\Gamma^{tot} M_i e^{i\Phi_i}}{M_i^2 - W^2 - iM_i \Gamma^{tot}} A_{\gamma N}(W)$

 Φ_i : Unitarization Phase

 \rightarrow

Results from MAID and JLab/Yerevan UIM:

- 1. Successful in extracting Δ parameters
- 2. Can fit pion production data up to W=2 GeV
- 3. More will be discussed in I. Aznauryan's talk

Comments:

Coupled-channel effects are not treated explicitly

[$\gamma N \rightarrow (\pi \Delta, \rho N \cdots) \rightarrow \pi N$ is neglected]

\rightarrow

The extracted N^* parameters in the second and third resonance regions need to be verified

Multi-channel K-matrix models

– SAID :

 \rightarrow

Consider γN , πN , $\pi \Delta$ (all inelastic channels)

 $T_{\gamma N,\pi N}(SAID) = A_I(1 + iT_{\pi N,\pi N}) + A_R T_{\pi N,\pi N}$ $A_I = K_{\gamma N,\pi N} - \frac{K_{\gamma N,\pi \Delta} K_{\pi N,\pi N}}{K_{\pi N,\pi \Delta}}$ $A_R = \frac{K_{\gamma N,\pi \Delta}}{K_{\pi N,\pi \Delta}}$

Actual analysis:

$$A_{I} = v_{\gamma N,\pi N}^{bg} + \sum_{n=0}^{M} \bar{p}_{n} z Q_{l_{\alpha}+n}(z)$$
$$A_{R} = \frac{m_{\pi}}{k_{0}} (\frac{q_{0}}{k_{0}})^{l_{\alpha}} \sum_{n=0}^{N} p_{n} (\frac{E_{\pi}}{m_{\pi}})^{n}$$

 \bar{p}_n, p_n : fitting parameters

 N^* parameters are extracted by fitting the resulting amplitudes to a Briet-Wigner parameterization at $W \rightarrow M^*$

Results from **SAID** :

- * determine $\pi N \to \pi N$ amplitudes
- * determine $\gamma N \rightarrow \pi N$ multipole amplitudes
- * extract N^* parameters

Comments :

Its many-parameter parameterization of the non-resonant amplitudes need to be justified theoretically

Coupled-channel effects are not treated explicitly

 \rightarrow

The extracted N^* parameters in the second and third resonance regions need to be verified

– Giessen Model :

Approximation : K = V = Tree-daigrams

 $T_{a,b}(Giessen) = \sum_{c} [(1 + iV(E))^{-1}]_{a,c} V_{c,b}(E)$

Results:

 \rightarrow

- * Fit both πN and γN reaction data with channels: γN , πN , σN , ηN , $K\Lambda$, $K\Sigma$ and ωN .
- * Indentify N^* : $P_{31}(1750)$, $P_{13}(1900)$, $P_{33}(1920)$, $D_{13}(1950)$

Comments :

Multiple-scattering effects in K matrix is neglected

 \rightarrow

The extracted N^* parameters in the second and third resonance regions need to be verified

For deriving:

- Carnegie-Mellon Berkeley (CMB) Model
- Kent State University (KSU) model
- Dynamical models

Apply two-potential scattering formulation

for
$$V = v^{bg} + \frac{\Gamma_{N^*}^{\dagger}\Gamma_{N^*}}{E - M_{N^*}^0}$$

 \rightarrow

$$T(E) = t^{bg}(E) + \frac{\overline{\Gamma}_{N^*}^{\dagger}(E)\overline{\Gamma}_{N^*}(E)}{E - M_{N^*}^0 - \Sigma_{N^*}(E)}$$

$$t^{bg} = v^{bg} + v^{bg}G(E)t^{bg}(E)$$

Resonances are detrmined :

$$\bar{\Gamma}_{N^*} = \Gamma_{N^*} + \Gamma_{N^*} G(E) t^{bg}(E)$$

$$\Sigma_{N^*}(E) = \Gamma_{N^*}^{\dagger} G(E) \overline{\Gamma}_{N^*}$$

Main feature :

• Non-resonant effects on resonance parameters are identified

For multi -channels multi -resonances case:

$$T_{a,b}(E) = t_{a,b}^{bg}(E) + \sum_{N_i^*, N_j^*} \bar{\Gamma}_{N_i^*, a}^{\dagger}(E) [\hat{G}(E)]_{i,j} \bar{\Gamma}_{N_j^*, b}(E)$$

$$t_{a,b}^{bg} = v_{a,b}^{bg} + \sum_{c} v_{a,c}^{bg} G_c(E) t_{c,b}^{bg}(E)$$

$$\bar{\Gamma}_{N^*,a} = \Gamma_{N^*,a} + \sum_b \Gamma_{N^*,b} G_b(E) t_{b,a}^{bg}$$

$$[\hat{G}(E)^{-1}]_{i,j}(E) = (E - M_{N_i^*}^0)\delta_{i,j} - \Sigma_{i,j}(E)$$

$$\Sigma_{i,j}(E) = \sum_{a} \Gamma^{\dagger}_{N^*,a} G_a(E) \bar{\Gamma}_{N^*_j,a}$$

 $a,b=\gamma N,\,\pi N,\,\eta N,\,\omega N,\,KY,\,\pi\Delta,\,
ho N,\,\sigma N$ (for $\pi\pi N$)

• Carnegie-Mellon Berkeley (CMB) Model

 \rightarrow

Set :
$$v_{a,b}^{bg}(E) = \frac{\Gamma_{L,a}^{\dagger}\Gamma_{L,b}}{E-M_L} + \frac{\Gamma_{H,a}^{\dagger}\Gamma_{H,b}}{E-M_H}$$
 (separable form) \rightarrow

$$V = v^{bg} + v^{R} = \sum_{i=N_{i}^{*}, L, H} \frac{\Gamma_{i,a}^{\dagger} \Gamma_{i,b}}{E - M_{i}} = \frac{Separable}{Separable}$$

$$T_{a,b}(E) = \sum_{i,j} \Gamma_{i,a}^{\dagger} G_{i,j}(E) \Gamma_{j,b}$$

$$G(E)_{i,j}^{-1} = (E - M_i^0) \delta_{i,j} - \Sigma_{i,j}(E)$$

$$\Sigma_{i,j}(E) = \sum_a \int k^2 dk \frac{\Gamma_{i,a}^{\dagger}(k) \Gamma_{j,a}(k)}{E - E_{M_a}(k) - E_{B_a}(k) + i\epsilon}$$
With appropriate variable changes : $s = E^2$ \rightarrow

CMB's dispersion relations :

$$\Sigma_{i,j}(s) = \sum_{c} \gamma_{i,c} \Phi_{c}(s) \gamma_{j,c}$$

$$Re[\Phi_{c}(s)] = Re[\Phi_{c}(s_{0})] + \frac{s - s_{th,c}}{\pi} \int_{s_{th}}^{\infty} \frac{Im[\Phi_{c}(s')]}{(s' - s)(s' - s_{0})} ds'$$

CMB model is analytic

 \rightarrow

Recent applications/extensions of CMB model :

– Zagreb : M. Batinic, A. Svarc and collaborators

Consider three channels : πN , ηN , $\sigma(\pi\pi)N$

– PITT-ANL : T. Varana, S. Dytman, T.-S. H. Lee

Consider up to eight channels: πN , ηN , $\pi \Delta$, ρN , $\sigma(\pi \pi)N$, $\pi N^*(1440)$, $K\Lambda$, γN

Results:

- N^* in S_{11} channel is better understood
- The interplay between channel coupling and N^* excitation has been better understood
- Some extracted N^* parameters are very different from PDG values \rightarrow

be careful in using PDG's values to test hadron models

Comments :

Its separable non-resonant amplitudes need to be justified theoretically

\rightarrow

The extracted N^* parameters in the second and third resonance regions need to be verified

• Kent State University (KSU) model

Start with

$$T(E) = t^{bg}(E) + \frac{\bar{\Gamma}_{N^*}^{\dagger}\bar{\Gamma}_{N^*}}{E - M_{N^*}^0 - \Sigma_{N^*}(E)}$$

One can derive exactly the distorted-wave form

$$S(E) = 1 + 2iT(E)$$

= $\omega^{(+)T} [1 + 2i \frac{\Gamma_{N^*}^{\dagger}(E)\Gamma_{N^*}}{E - M_{N^*}^0 - \Sigma_{N^*}(E)}] \omega^{(+)}$

where

$$\omega^{(+)} = 1 + G(E)t^{bg}(E)$$

(1)

\rightarrow S-matrix :

$$S(E) = \omega^{(+)T} R(E) \omega^{(+)}$$

$$R(E) = 1 + 2iT^{R}(E)$$
$$T^{R}(E) = \frac{\Gamma_{N^{*}}^{\dagger}(E)\Gamma_{N^{*}}(E)}{E - M_{N^{*}}^{0} - \Sigma_{N^{*}}(E)}$$

KSU separable parameterization:

$$T^{R}(E) = \frac{K}{1+iK} \sim x \frac{\Gamma/2}{E-M-i\Gamma/2}$$
$$\omega^{(+)} = B_{1}B_{2} \cdot B_{n}$$
$$B_{i} \sim e^{iX\Delta_{i}}$$

 Γ , x and X are parameters in the fit

Results from KSU:

- fits to E_{0^+} of $\gamma N \rightarrow \pi N$
- being applied to study kaon production

Comments :

Its separable parameterization of non-resonant amplitude need to be justified theoretically

\rightarrow

The extracted N^* parameters in the second and third resonance regions need to be verified

Dynamical Models

Two equivalent approaches:

• Solve dynamical equations with $V = v^{bg} + v^R$ directly :

$$T_{a,b}(E) = V_{a,b} + \sum_{c} V_{a,c} G_{c}(E) T_{c,b}(E)$$

 $a, b, c = \pi N, \gamma N, \eta N, \pi \Delta \cdots$ Recent works :

- Julich Model : πN
- Fuda et al. : πN , γN
- DMT Model : πN , γN , ηN (S.N. Yang's talk)
- Ohio-Utrecht Model : πN , γN (V. Pascalutsa's talk)
- Chiral SU(3) models : KY, ωN , γN , πN (M. Lutz's talk)

• Use two-potential formulation to identify resonant mechanism

$$T_{a,b}(E) = t_{a,b}^{bg}(E) + \sum_{N_i^*, N_j^*} \bar{\Gamma}_{N_i^*, a}^{\dagger} [D^{-1}(E)]_{i,j} \bar{\Gamma}_{N_j^*, b}$$
$$t^{bg}(E) = u^{bg} + \sum u^{bg} C (E) t^{bg}(E)$$

$$\bar{\Gamma}_{a,b}^{rog}(E) = v_{a,b}^{rog} + \sum_{c} v_{a,c}^{rog} G_{c}(E) t_{c,b}^{rog}(E)$$

$$\bar{\Gamma}_{N^{*},a} = \Gamma_{N^{*},a} + \sum_{b} \Gamma_{N^{*},b} G_{b}(E) t_{b,a}^{bg}(E)$$

Recent Works

- Sato-Lee Model : πN , γN
- Yoshimoto et al. : πN , ηN , $\pi \Delta$
- Oh et al.: γN , ωN
- Julia-Diaz et al. : γN , KY, πN (B. Julia-Diaz's talk)
- Lee, Matsuyama, Sato (2004) : $\pi N, \eta N, \gamma N$

DMT model (S.N. Yang's talk)

Ohio-Utrecht Model (V. Pascalutsa's talk)

Kaon production (B. Julia-Diaz's talk)

Chiral SU(3) models (M. Lutz's and E. Kolomeitsev's talk)

Julich's Coupled-channel Model

O. Krehl, C. Hanhart, S. Krewald, J. Speth (2000)

- Channels : $\pi N, \eta N, \sigma N, \pi \Delta, \rho N$.
- V : meson-exchange, s-channel N^*
- fit : πN amplitudes up to 1.9 GeV
- Main result:

 P_{11} is due to meson-baryon coupled-channel effects

Comments :

 \rightarrow

- 1. It does not satisfy $\pi\pi N$ unitarity condition
- 2. Need to check its predictions of $\pi N \rightarrow \pi \pi N$ and γN cross sections

Question on the nature of P_{11} is still open

Coupled-channel study of N^* in S_{11}

(T.-S. H. Lee, A. Matsuyama, T. Sato (2004))

- Channels : $\pi N, \eta N, \gamma N$
- Non-resonant int. : tree-diagram of chiral Lagrangian

 $v_{\pi N,\pi N}, v_{\pi N,\eta N}, v_{\eta N,\eta N}$

 $v_{\gamma N,\pi N}, v_{\gamma N,\eta N}$

- 2 N^* : Related to constituent quark model
- Finding :

 \rightarrow

- 1. Can describe the data only up to W = 1.7 GeV
- 2. Meson cloud effect on $\gamma N \rightarrow N^*$ is about 20%
- 3. Bare helicity amplitude is close to quark model

Consistent with the finding in the study of Δ excitation

$\pi N ightarrow \pi N$ amplitude

$\gamma N ightarrow \pi N$ amplitude

$\pi N \to \eta N$ amplitude

	M_R	Γ_R	$\frac{\Gamma_{\pi}}{\Gamma_R}(\%)$	$A_{1/2}$
Coupled-channel model	1538	122	36	61.24
			Bare	(77.64)
Capstick				76

Comments :

To explore N^* from all πN and γN data up to W = 2.5 GeV, we need to include coupling with $\pi \pi N$ channel

\rightarrow

Develop coupled-channel model with $\pi\pi N$ channels

Argonne-Osaka-Shizuoka collaboration

A. Matsuyama, T. Sato, T.-S. H. Lee (in progress)

Coupled-channel model with $\pi\pi N$

Apply second-order unitary transformation method to derive $H_{eff}(g^2, g^3)$ g : strong coupling constant of H_I

$$H^{\prime\prime} = U_2^\dagger [H^\prime] U_2$$

$$H' = U_1^{\dagger} H U_1$$

= $H_{eff}(g^2) + H_I'^Q(g^2) + H_I'^P(g^3) + H_I'^Q(g^3) + \cdots$

Note :

 \rightarrow

SL model : $H_{eff}(g^2)$ in $\Delta \oplus \gamma N \oplus \pi N$

Evaluate $H_{eff}(g^2, g^3)$ in $MB \oplus \pi\pi N$ \rightarrow

Coupled-channel model with $\pi\pi N$

$$\begin{aligned} H_{eff} &= H_0 + H_I \\ H_I &= \Gamma_V + v_{2\leftrightarrow 2} + v_{2\leftrightarrow 3} + v_{3\leftrightarrow 3} \end{aligned}$$

with

$$\Gamma_V = \sum_{N^*} \sum_{MB} [\Gamma_{N^* \leftrightarrow MB}] + h_{\rho \leftrightarrow \pi\pi} + h_{\sigma \leftrightarrow \pi\pi}$$

- *MB*: $\gamma N, \pi N, \eta N, \pi \Delta, \rho N, \sigma N$
- Γ_V : bare vertex interactions

• Non-resonant interactions

$$v_{2\leftrightarrow 2} = \sum_{MB,M'B'} v_{MB,M'B'} + v_{\pi\pi}$$

(2)

 $v_{MB,M'B'}$: meson-baryon interactions

$$v_{\pi\pi}$$
: $\pi\pi$ interaction.

$$v_{2\leftrightarrow 3}:\pi N\leftrightarrow\pi\pi N$$

 $v_{3\leftrightarrow 3}:\pi\pi N\leftrightarrow\pi\pi N$

• $v_{\pi\pi}, h_{\rho\leftrightarrow\pi\pi}, h_{\sigma\leftrightarrow\pi\pi}$: from $\pi\pi$ scattering

v_{3↔3}:

$$T_{\gamma N,\pi\pi N}(E) = T_{\gamma N,\pi\Delta}(E)G_{\pi\Delta}\Gamma_{\Delta,\pi N}$$
$$+T_{\gamma N,\rho N}(E)G_{\rho N}h_{\rho,\pi\pi}$$
$$+T_{\gamma N,\sigma N}(E)G_{\sigma N}h_{\sigma,\pi\pi}$$

where

 \rightarrow

$$T_{\gamma N,MN}(E) = t_{\gamma N,MN}(E) + \sum_{N^*} \frac{\bar{\Gamma}_{\gamma N \to N^*}(E)\bar{\Gamma}_{N^* \to MN}(E)}{E - M_{N^*}^0 - \Sigma_{N^*}(E)}$$
$$G_{MB}(E) = \frac{1}{E - E_B - E_M - \Sigma(E)}$$

 $\Sigma(E)$ = Self-energy of the unstable Δ , ρ , and σ

The dressed vertices are

$$\bar{\Gamma}_{N^* \to MB} = \Gamma_{N^* \to MB} + \sum_{M'B'} \Gamma_{N^* \to M'B'} G_{M'B'}(E) X_{M'B',MB}$$

$$\uparrow$$

$$Bare$$

Non-resonant amplitudes are:

$$X_{MB,M',B'}(E) = Z_{MB,M'B'}(E) + \sum_{M''B''} Z_{MB,M''B''}(E) G_{M''B''}(E) X_{M''B'',M'B'}(E)$$

The channel-coupling interactions are:

$$Z_{MB,M'B'} = v_{MB,M'B'}(E) + Z^{(\pi\pi N)}{}_{MB,M'B'}(E)$$
(3)

Three-body $\pi\pi N$ cut is in

$$Z^{(\pi\pi N)}{}_{MB,M'B'}(E) = Z^{(E)}_{MB,M'B'}(E) + Z^{(I)}_{MB,M'B'}(E)$$

 \rightarrow

$$\begin{aligned} Z_{MB,M'B'}^{(E)}(E) &= \langle MB \mid \Gamma_V \frac{P_{\pi\pi N}}{E - H_0 + i\epsilon} \Gamma_V \mid B'M' \rangle \\ Z_{MB,M'B'}^{(I)}(E) &= \langle MB \mid \Gamma_V \frac{P_{\pi\pi N}}{E - H_0 + i\epsilon} t_{\pi\pi N,\pi\pi N}(E) \\ & \frac{P_{\pi\pi N}}{E - H_0 + i\epsilon} \Gamma_V \mid M'B' \rangle \end{aligned}$$

Apply the Spline-function expansion method to solve the $\pi\pi N$ coupled-channel equations on real-axis

* The method was developed in $NN \rightarrow \pi NN$ studies by Matsuyama and Lee (1986)

First Results from Unitary $\pi\pi N$ calculations

Objetive: explore the starting parameters

- $h_{\rho,\pi\pi}$ and $h_{\sigma,\pi\pi}$ from fitting $\pi\pi$ phase shifts (by Johnstone and Lee)
- $v_{2,2}$ are calculated using the coupling constants of Julich's model

 $v_{a,b}$

where
$$\boldsymbol{a}, \boldsymbol{b} = \gamma N, \pi N, \eta N, \rho N, \pi \Delta, \sigma N$$

have been constructed

• $N^* - > \gamma N$, πN , ηN , ρN , $\pi \Delta$ are taken from the 3P_0 model of Capstick and Roberts and/or from PDG

 $d\sigma/dM_{\pi N}$ of $\pi^+ p \to \pi \pi N$

$d\sigma/dM_{\pi\pi}$ of $\pi^+ p \to \pi\pi N$

Effect of coupled-channel and $\pi\pi N$ cut on amplitudes

Effect of coupled-channel and $\pi\pi N$ cut on amplitudes

Effect of $\pi\pi N$ cut

Effect of $\pi\pi N$ cut

 $\gamma p \to \pi N, \eta N, \pi \pi N (\pi \Delta, \rho N)$

$\gamma p \to \pi N, \eta N, \pi \pi N (\pi \Delta, \rho N)$

Fits to πN scattering amplitudes

$P_{11}:$

If coupled-channel multiple scattering and $\pi\pi N$ cut structure is neglected \rightarrow

- Moscow/Jlab Isobar Model of $\gamma N \rightarrow \pi \pi N$ (V. Mokeev's talk)
- Amplitude analyses of $\gamma N \rightarrow \pi \pi N$ of RPI/JLab group
Concluding Remarks

- We have developed a dynamical approach for investigating N^* in πN and γN reactions
- It is tractable and systematic in getting H_{eff} from relativistic quantum field theory
- The model in the Δ region can describe most of the current data
- Numerical methods for solving coupled-channel model including $\pi\pi N$ has been well developed with some preliminary results.
- $\pi\pi N$ unitarity cut is crucial in predicting $\pi\pi N$ production cross sections and identifing "missing" resonances
- Much more work is needed to carry out complete coupled-channel analyses of all meson production data.