Soft-QCD Modeling

of Di-quark Correlations and Mesons for the Study of the Nucleon and its Resonances

Peter Tandy tandy@kent.edu Center for Nuclear Research Kent State University

Collaborators

- Pieter Maris, Univ of Pittsburgh
 - Much of this not possible without him
- Mandar Bhagwat, Kent State University
- Mike Pichowsky, Kent State University
- Craig Roberts, Argonne National Laboratory

Topics

- Context of QCD modeling of hadron observables via DSEs
 - Ladder-rainbow truncation and symmetry constraints
 - Ordering/organization of mechanisms
 - Comparison with lattice-QCD
- Summary of results for meson observables, decays, transitions, form factors ···
- Comment on t-channel "meson exchange"
- Diquarks—qq correlations in baryons: results for Arne Hoell's work—see Friday talk
- Limitations of ladder-rainbow—some consequences from 3-gluon coupling
- Summary

To Calculate Meson Observables

Lattice-QCD and DSE-based modeling

- Lattice: $\int D\bar{q}qG \ \mathcal{O}(\bar{q},q,G) \ e^{-\mathcal{S}[\bar{q},q,G]}$
 - Euclidean metric, x-space
 - Discretize, finite vol, modify and improve $\mathcal{L}(x)$
 - Monte-Carlo
 - Large time limit \Rightarrow nearest hadronic mass shells
 - Ch. extrap., contin. and vol. limits, CPU intensive
- EOMs: DSEs $\int D\bar{q}qG \frac{\delta}{\delta q(x)} e^{-S[\bar{q},q,G]+(\bar{\eta},q)+(\bar{q},\eta)+(J,G)}$
 - Euclidean metric, p-space
 - Truncate: replace high n-point fns by phenomenology
 - Conv discretized integral eqns, modest CPU needs
 - Analtyic contin. \Rightarrow nearest hadronic mass shells
- In the middle: a clearing house for dominant mechanisms?

Organization chosen for DSE-based modeling

- EOMs: DSEs $\int D\bar{q}qG \frac{\delta}{\delta q(x)} e^{-\mathcal{S}[\bar{q},q,G] + (\bar{\eta},q) + (\bar{q},\eta) + (J,G)} = 0$
- Euclidean metric, p-space, covariant, no 3-space reduction
- Truncate to minimum 2-point, 3-point fns; IR phenomenology for ignorance
- Insist on preserving 1-loop QCD renorm group in UV
- Analtyic contin in external hadronic P^2 to mass shells
- Constraints for truncation: vector WTI, axial vector WTI E.g.

$$-iP_{\mu}\Gamma_{5\mu}(k;P) = S^{-1}(k_{+})\gamma_{5}\frac{\tau}{2} + \gamma_{5}\frac{\tau}{2}S^{-1}(k_{-}) -2m_{q}(\mu)\Gamma_{5}(k;P)$$

 \blacksquare \Rightarrow kernels of DSE_q and K_{BSE} are related

Organization chosen for DSE-based modeling (2)

- Constraints for truncation: vector WTI, axial vector WTI
 - E.G. at 2,3-point fn level:
 - Rainbow DSE, ladder BSE, and IA for $F_{\pi}(Q^2)$ are symm-matched set
 - $\Rightarrow F_{\pi}(Q^2=0) = Q_{\pi} = 1$, always
 - \Rightarrow leading asymptotic $F_{\pi}(Q^2)$ phys content present
 - Hopefully the interpolation can't go too wrong
 - Present IR phenomenology: 1 param to fit $\langle \bar{q}q \rangle_{\mu}$
 - Goldstone nature of ps octet, and phys masses from explicit ch symm breaking, will always be correct—indep of model details
- A systematic symm-preserving correction scheme is available

Organization chosen for DSE-based modeling (3)

- DSE approach emphasizes p^2 -depn of q-masses, connecting constituent to current masses
 e.g. DCSB $\Rightarrow \pi$: $\Gamma^0_{\pi}(p^2) = i\gamma_5 \left[\frac{1}{4} \text{tr} S_0^{-1}(p^2)\right] / f^0_{\pi} + \cdots$
- Can compare intermediate quantities with lattice-QCD for important guidance
- Present DSE organization emphasizes a certain ∞ sub-class of multiple gluon components
- Weakness: present choice of truncation may not be efficient for all processes
- Efficiency of description of observables is final guide

Ladder-Rainbow Model

short-range part of interaction kernel fixed by pQCD —one-gluon exchange with 1-loop renormalization group improvement

- $K_{\rm BSE} \to -\gamma_{\mu} \frac{\lambda^{a}}{2} 4\pi \alpha_{\rm eff}(q^{2}) D_{\mu\nu}^{\rm free}(q) \gamma_{\nu} \frac{\lambda^{a}}{2}$ • $\frac{Z_{1\rm F}^{2}(\mu,\Lambda)}{Z_{2}^{2}(\mu,\Lambda) Z_{3}(\mu,\Lambda)} \to \left[\frac{\alpha_{s}(\Lambda^{2})}{\alpha_{s}(\mu^{2})}\right]$ $\alpha_{\rm eff}(q^{2}) \xrightarrow{\rightarrow}{UV} \alpha_{s}^{1-\rm loop}(q^{2}) = \frac{12\pi}{(11N_{c}-2N_{f})\ln(q^{2}/\Lambda^{2})}$
- first term in a systematic expansion

Ladder-Rainbow Model

- short-range part of interaction kernel fixed by pQCD
 —-one-gluon exchange with 1-loop renormalization group improvement
- Iong-range part (IR, low-k²) of interaction kernel fixed by $\langle \bar{q}q \rangle_{\mu=1 \text{ GeV}} = -(240 \text{MeV})^3$
- single model parameter:

gluon mass scale \sim 700 MeV

PM & P.C. Tandy, PRC60, 055214 (1999)

Ladder-Rainbow Model

- short-range part of interaction kernel fixed by pQCD
 —-one-gluon exchange with 1-loop renormalization group improvement
- Iong-range part (IR, low-k²) of interaction kernel fixed by $\langle \bar{q}q \rangle_{\mu=1 \text{ GeV}} = -(240 \text{MeV})^3$
- Effective running coupling

Ladd-Rainb Model: Performance and Limitations

- Corrections are small in ps and vect meson channels Bender, et al. PLB380, 7 (96); Bender, Detmold, et al. PRC65, 065203 (02); Bhagwat, Höll, Krassnigg, Roberts & Tandy, PRC70, 035205 (2004)
- 1-parameter for $\langle \bar{q}q \rangle_{\mu} \Rightarrow$
- $M_{\rho}, M_{\phi}, M_{K^{\star}}$ to 5%; $f_{\rho}, f_{\phi}, f_{K^{\star}}$ to 10%
- Em form factors $Q^2 < 5 \text{ GeV}^2$ good, but chiral loops not in
- Strong decays, em transition form factors satisfactory
- Limitations—corrections to ladder-rainbow needed:
 - Present LR model too attractive for axial vectors M_{a_1}, M_{b_1}
 - Chiral loops have to be added
 - Need extension to non-Abelian axial anomaly and $\eta \eta'$

Etc

Pion electromagnetic form factor

PM and Tandy, PRC62,055204 (2000) [nucl-th/0005015]

Pion electromagnetic form factor

PM and Tandy, PRC62,055204 (2000) [nucl-th/0005015] JLab data from Volmer *et al*, PRL86, 1713 (2001) [nucl-ex/0010009]

Pion electromagnetic form factor

PM and Tandy, PRC62,055204 (2000) [nucl-th/0005015] JLab data from Volmer *et al*, PRL86, 1713 (2001) [nucl-ex/0010009]

Summary of light meson results

 $m_{u=d} = 5.5 \text{ MeV}, m_s = 125 \text{ MeV}$ at $\mu = 1 \text{ GeV}$

Pseudoscalar (PM, Roberts, PRC56, 3369)

	expt. calc.			
- $\langle ar{q}q angle^0_\mu$	(0.236 GeV) ³	(0.241 [†]) ³		
m_{π}	0.1385 GeV	0.138 [†]		
f_{π}	0.0924 GeV	0.093 [†]		
m_K	0.496 GeV	0.497 [†]		
f_K	0.113 GeV	0.109		

Charge radii (PM, Tandy, PRC62, 055204)

r_{π}^2	0.44 fm ²	0.45
$r_{K^{+}}^{2}$	0.34 fm^2	0.38
$r_{K^{0}}^{2}$	-0.054 fm^2	-0.086

 $\gamma \pi \gamma$ transition (PM, Tandy, PRC65, 045211)

$8\pi\gamma\gamma$	0.50	0.50	
$r_{\pi\gamma\gamma}^2$	0.42 fm^2	0.41	

Weak K_{l3} decay (PM, Ji, PRD64, 014032)

$\lambda_+(e3)$	0.028	0.027
$\Gamma(K_{e3})$	7.6 $\cdot 10^{6} \text{ s}^{-1}$	7.38
$\Gamma(K_{\mu3})$	$5.2 \cdot 10^6 \text{ s}^{-1}$	4.90

Vector mesons	(PM, Ta	andy, PRC60, 055214)
$m_{ ho/\omega}$	0.770 GeV	0.742
$f_{ ho/\omega}$	0.216 GeV	0.207
$m_{K^{\star}}$	0.892 GeV	0.936
$f_{K^{\star}}$	0.225 GeV	0.241
m_{ϕ}	1.020 GeV	1.072
f_{Φ}	0.236 GeV	0.259
Strong decay (J	larecke, PM, Ta	andy, PRC67, 035202)
<i>\$</i> ρππ	6.02	5.4
<i>S</i> _{\$\$}	4.64	4.3
$g_{K^{\star}K\pi}$	4.60	4.1
<i>gK</i> * <i>K</i> π Radiative decay	4.60	4.1 (PM, nucl-th/0112022)
$g_{K^{\star}K\pi}$ Radiative decay $g_{\rho\pi\gamma}/m_{\rho}$	4.60 0.74	4.1 (PM, nucl-th/0112022) 0.69
$g_{K^{\star}K\pi}$ Radiative decay $g_{\rho\pi\gamma}/m_{\rho}$ $g_{\omega\pi\gamma}/m_{\omega}$	4.60 0.74 2.31	4.1 (PM, nucl-th/0112022) 0.69 2.07
$g_{K^{\star}K\pi}$ Radiative decay $g_{\rho\pi\gamma}/m_{\rho}$ $g_{\omega\pi\gamma}/m_{\omega}$ $(g_{K^{\star}K\gamma}/m_{K})^{+}$	4.60 0.74 2.31 0.83	4.1 (PM, nucl-th/0112022) 0.69 2.07 0.99
$g_{K^{\star}K\pi}$ Radiative decay $g_{\rho\pi\gamma}/m_{\rho}$ $g_{\omega\pi\gamma}/m_{\omega}$ $(g_{K^{\star}K\gamma}/m_{K})^{+}$ $(g_{K^{\star}K\gamma}/m_{K})^{0}$	4.60 0.74 2.31 0.83 1.28	4.1 (PM, nucl-th/0112022) 0.69 2.07 0.99 1.19
$g_{K^*K\pi}$ Radiative decay $g_{\rho\pi\gamma}/m_{\rho}$ $g_{\omega\pi\gamma}/m_{\omega}$ $(g_{K^*K\gamma}/m_K)^+$ $(g_{K^*K\gamma}/m_K)^0$ Scattering lengt	4.60 0.74 2.31 0.83 1.28 h (PM, Cota	4.1 (PM, nucl-th/0112022) 0.69 2.07 0.99 1.19 anch, PRD66, 116010)
$g_{K^*K\pi}$ Radiative decay $g_{\rho\pi\gamma}/m_{\rho}$ $g_{\omega\pi\gamma}/m_{\omega}$ $(g_{K^*K\gamma}/m_K)^+$ $(g_{K^*K\gamma}/m_K)^0$ Scattering lengt a_0^0	4.60 0.74 2.31 0.83 1.28 h (PM, Cota 0.220	4.1 (PM, nucl-th/0112022) 0.69 2.07 0.99 1.19 anch, PRD66, 116010) 0.170
$g_{K^*K\pi}$ Radiative decay $g_{\rho\pi\gamma}/m_{\rho}$ $g_{\omega\pi\gamma}/m_{\omega}$ $(g_{K^*K\gamma}/m_{K})^+$ $(g_{K^*K\gamma}/m_{K})^0$ Scattering lengt a_0^0 a_0^2	4.60 0.74 2.31 0.83 1.28 h (PM, Cota 0.220 0.044	4.1 (PM, nucl-th/0112022) 0.69 2.07 0.99 1.19 anch, PRD66, 116010) 0.170 0.045

Light meson sector is well understood

Relative Error, Predictions of Maris and Tandy Model

All tabulated quantities in nu-th/0301049

<error> = 1.6%, Sqrt[<error²>] = 15%

Beyond Ladder-Rainbow

- Preservation of AV-WTI: dressing of $\bar{q}\gamma q$ vertex in DSE \Rightarrow corrections to ladd-rainb K_{BSE}
- qq mesons: Feyn diagrammatic $\Sigma \Rightarrow K_{BSE}$

■ $\frac{\delta}{\delta S}$ [closed q-loop] ⇒ annihilation kernel for flavor singlets, e.g. $\eta - \eta'$

Beyond ladder-rainbow \Rightarrow **beyond IA**

Corrections to the ladd-rainb truncation \Rightarrow corresp corrections to the BSE norm condition

and so on \cdots . Different organizations may absorb some into a wavefn.

DSE/BSE kernel from Lattice Gluon Propagator

-Bhagwat, Pichowsky, Roberts, Tandy, PRC68, 015203 (03)

$$g^2 \gamma_\mu D(p-q) Z_{1F}(\mu,\Lambda) \Gamma_\nu(q,p) \to \gamma_\mu g^2 D(p-q) \gamma_\nu V(p-q)$$

UV limit: $g^2 D(k^2) V(k^2) \to \frac{4\pi \alpha_s^{1-\text{loop}}(k^2)}{k^2}$

Qu-lattice S(p), D(q) mapped to a DSE kernel

 $S(p) = Z(p) [i \not p + M(p)]^{-1}$

Lattice-assisted DSE Results

- Evident vertex enhancement
- Curvature in low m_q depn
- $M^{\rm IR}(p^2)$ 40% below linear
- Chiral Extrapolation

- f_{π} 30% low

Lattice-assisted DSE Results

- Confinement/positivity analysis (Osterwalder-Schrader axiom No. 3)
- Fourier transf $\sigma_S(p_4, \vec{p} = 0)$ to Eucl time T

solid = lattice prop, dashed = MT DSE, dotted = cc pole eg

Dressed gluon-quark vertex: 1-loop pQCD

- Satisfies Slavnov-Taylor Id to $\mathcal{O}(g^3)$ $ik_{\nu}\Gamma_{\nu} = G(k^2)[(1+B)S^{-1}(p_+) - S^{-1}(p_-)(1+\tilde{B})]$
- (Abelian, QED) color singlet channel: C_F = $(N_c^2 1)/2N_c$ (strong attractive)

Estimate Effect of 3-Gluon Vertex on Mesons

- Enters quark-gluon vertex and K_{BSE} , preserves chiral symmetry
- Implemented in DSE_q and meson BSE via (algebraic) MN model
- nucl-th/0403012, Bhagwat, Höll, Krassnigg, Roberts, PCT
- cf Ladder-rainbow: 30% reduction in $M_{\rm V}$ minor change in $M_{\rm PS}$

DSE Model for k = 0 gluon-quark vertex

$$\begin{split} \Gamma_{\nu}(p;0) &= \gamma_{\nu} \, \lambda_1(p) - 4 p_{\nu} \not p \lambda_2(p) - 2 i p_{\nu} \lambda_3(p) \\ \text{WI:} \, \lambda_1 \sim A, \quad \lambda_2 \sim -A'/2, \quad \lambda_3 \sim B' \end{split}$$

MT Model too attractive at large m_q ?

MT Model too attractive at large m_q ?

t-channel $q\bar{q}$ *"meson" correlation*

- $Q^2 \approx 0, P^2 < 5 \text{ GeV}^2$ no P^2 depn in G (VMD)
- Both $P^2 \approx Q^2$ large, $A \sim 1/P^2$, $F \sim 1/P^4$, \Rightarrow problem
- $Q^2, P^2 > 1 \text{ GeV}^2$, " ρ " prop overest P^2 falloff by > 50%
- **•** F would have to grow with P^2 ! meson-exch not relevant !

Diquarks-1

- DIQUARK: Correlation of two quarks
- one-gluon exchange in quark-quark channel is
 - attractive in color anti-triplet $\bar{\mathbf{3}}_c$ configuration
 - repulsive in color sextet 6_c configuration
- Joint Structure $\bar{\mathbf{3}}_c$ diquark + $\mathbf{3}_c$ quark \Rightarrow diquark-quark reprint of a $\mathbf{1}_c$ baryon
- diquarks are colored, and hence confined
- SU(3) flavor structure: 6_f or $\overline{3}_f$ Pauli principle restricts flavor-spin configurations
 - total wave function has to be anti-symmetric
 - diquark $\bar{\mathbf{3}}_c$ is color anti-symmetric
 - diquark is symmetric in space-flavor-spin

Diquarks-2

DIQUARK BETHE-SALPETER EQN

$$\Gamma_D^{\alpha\beta}(p_+, -p_-)\epsilon_{abc} = \int_q^{\Lambda} K_{ad;be}^{\alpha\gamma;\beta\delta}(p_+, q_+; -p_-, -q_-) S^{\gamma\gamma'}(q_+) \Gamma_M^{\gamma'\delta'}(q_+, -q_-) \epsilon_{dec} S^{\delta\delta'}(-q_-)$$

• Notice that $\Gamma_D(p_+, -p_-) C$ satisfies a "meson" BSE, and ladder truncation is

 $\Gamma(p_+, p_-) = -\frac{f_c}{f_q} \int_q^{\Lambda} \mathcal{G}(k^2) \ D_{\mu\nu}^{\text{free}}(k) \gamma_\mu S(q_+) \Gamma(q_+, q_-) S(q_-) \gamma_\mu$

• where $f_c = \frac{4}{3}$ for mesons, and $f_c = \frac{2}{3}$ for diquarks

Diquarks-2a

 $\begin{tabular}{ll} \hline \begin{tabular}{ll} \hline \begin{tabular}{ll} \hline \begin{tabular}{ll} \hline \end{tabular} \\ \hline \end{tabular} \\ \hline \end{tabular} \\ \hline \begin{tabular}{ll} \hline \end{tabular} \\ \hline \endt$

 $\Gamma(q_+, q_-) = \gamma_5 \left[i E(q^2, q \cdot P) + \not P F(q^2, q \cdot P) + \not R G(q^2, q \cdot P) + \sigma_{\mu\nu} P_{\mu} q_{\nu} H(q^2, q \cdot P) \right]$

Diquark flavor structure: anti-triplet (anti-symmetric)

Vector mesons and axial-vector diquarks have eight components

$$\Gamma_{\mu}(q_{+},q_{-}) = \gamma_{\mu}^{T} F(q^{2},q \cdot P)$$
, (dominant)

Diquark flavor structure: sextet (symmetric)

P. Maris, FBS 32, 41 (2002)

		$uar{u}, uar{d}$, e	tc		$uar{s},dar{s}$, etc	C	$sar{s}$		
meson	π	$ ho,\omega$	σ	K	K^{\star}	κ	0^{-}	ϕ	0^+
calc.	0.138	0.741	0.671	0.496	0.937	0.893	0.696	1.07	1.08
canonical	0.121	0.875	0.759	0.425	1.08	1.03	0.588	1.24	1.30
separable	0.139	0.736	0.715	0.494	0.854	—		0.950	
lattice	0	0.64					0.88	1.03	
diquark	0+	1^{+}	0-	0+	1+	0^{-}	0^+	1+	0-
calc.	0.82	1.02	1.03	1.10	1.30(6)	1.31(4)	1.27	1.44(4)	1.50(4)
canonical	0.74	1.06	1.14(2)	0.94	1.34(4)	1.45(4)	1.12	1.51(4)	1.72(6)
separable	0.74	0.95	1.50	0.88	1.05	—		1.13	
lattice	0.69	0.80					1.19	1.21	

separable model: Burden et al PRC55, 2649 (1997)

lattice data: Hess et al, PRD58 111502 (1998)

Diquark size-1

P. Maris, FBS 32, 41 (2002)

Leading Chebyshev moments of canonical amplitudes in the up/down sector

Diquark size-2

Charge radii in ${\rm fm}^2$

meson				diquark						
r_π^2	$r^2_{q\bar{s};q}$	$r^2_{q\bar{s};\bar{s}}$	$r_{K^+}^2$	$r_{K^0}^2$		r_{ud}^2	$r_{qs;q}^2$	$r_{qs;s}^2$	r_{us}^2	r_{ds}^2
0.44	0.46	0.21	0.38	08		0.50	0.47	0.30	0.65	0.39

Summary

- Hadron observables and dynamics modeled from QCD -DSEs—covariant, quark confining, D χ SB
- Summary of ordering/organization
- $\langle \bar{q}q \rangle_{\mu} \Rightarrow 1$ IR parameter
- Propagators compare to lattice-QCD S(p)
- Meson observables
- Diquark correlations for baryon studies—see talk by Arne Hoell
- 3-gluon coupling, dressed $\bar{q}\gamma q$ vertex \Rightarrow 30% attraction to ground state vector mesons
- I-channel $q\bar{q}$ correlation "meson propagator"