The N $\Rightarrow \Delta$ transition at low momentum transfers

The issue
The MIT/Bates and the Mainz Programs
Future Prospects

C. N. Papanicolas

Dep. of Physics, Univ. of Athens

Institute of Accelerating Systems and Applications (IASA)

ANL Workshop, August 30, 2005

How do we measure the deformation of the proton?

Proton: a $J=\frac{1}{2}$ system, with a very complicated excitation spectrum.

The signal for deformation in the N $\Rightarrow \Delta$ transition

SIMPLISITIC: spherically symmetric

In SU(6) quark model, N and Δ have their quarks in s-state (L=0) N $\rightarrow \Delta$ transition is a pure spin-flip (Mag. Dipole, M1) transition

The signal for deformation in the $N \Rightarrow \Delta$ transition

Spherical \Rightarrow M1

Deformed \Rightarrow M1, E2, C2

Deformation signal

Origins of N $\rightarrow \Delta$ **Quadrupole Amplitude**

deformed pion cloud

(large distances)

color hyperfine interaction gives d state admixtures (short distances)

Using the precison of the electromagnetic probe

 $- v_{LT}R_{LT}\cos\phi_{X\gamma} - h v'_{LT}R'_{LT}\sin\phi_{X\gamma})$

Confronting Theory with Experiment

 Comparing EMR & CMR is necessary but not sufficient

 Need detailed study and comparison of isolated Responses

Extract the Information from the Interference Responses

$$R_{LT} = -\sin \theta_{pq}^* \operatorname{Re} \left\{ S_{0+}^* \left[M_{1-} - M_{1+} + 3E_{1+} \right] - \left[2S_{1+}^* - S_{1-}^* \right] E_{0+} \right. \\ \left. -6\cos \theta_{pq}^* \left[S_{1+}^* \left(M_{1-} - M_{1+} + E_{1+} \right) + S_{1-}^* E_{1+} \right] \right\} \right. \\ R_{LT}' = -\sin \theta_{pq}^* \operatorname{Im} \left\{ S_{0+}^* \left[M_{1-} - M_{1+} + 3E_{1+} \right] - \left[2S_{1+}^* - S_{1-}^* \right] E_{0+} \right. \\ \left. -6\cos \theta_{pq}^* \left[S_{1+}^* \left(M_{1-} - M_{1+} + E_{1+} \right) + S_{1-}^* E_{1+} \right] \right\}$$

Primarily: Sensitive to C2

$$R_{TT} = 3\sin^2 \theta_{pq}^* \left[\frac{3}{2} |E_{1+}|^2 - \frac{1}{2} |M_{1+}|^2 - \frac{1}{2} |M_{1+}|^2 - \operatorname{Re} \left\{ E_{1+}^* [M_{1+} - M_{1-}] + M_{1+}^* M_{1-} \right\} \right]$$

Primarily: Sensitive to E2

Dynamical Model of Sato-Lee

e.g. PRC 63, 055201 (2001)

- Quark core and pion-cloud contributions
- Dynamical scattering equation using effective Lagrangian; accounts for off-shell pion interactions effects

Effect of quark core

Effect of quark core + meson cloud

 $Q^2 (GeV/c)^2$

Background !

EMR at the photon point

Electroproduction

- Results from second generation experiments are now being released
- All possible reaction channels are being explored. Two general trends:
 - Measure with high precision (high luminosity, high resolution) crititically important points to isolate the important amplitude (Bates/OOPS, Mainz, FPP@Hall-A....)
 - Measure «everything» (maximum angular and invariant mass coverage). Get a global picture of the picture. (Bonn, Hall B, Hall C..)
- Consistent picture begining to emerge

CEBAF Large Acceptance Spectrometer (CLAS)

- Six identical sectors
- •5 T toroidal B-field
- •Δθ=15-140 degrees
- $\cdot \Delta \phi$ = 0-50 degrees
- •∆p/p = 10⁻²-10⁻³
- π⁰ electroproduction
 Proton detected
 Lorentz boost forms cone surrounding q vector.
 Cone angle Q², W dependent

C. Smith, Osaka 05

Out of plane capability: $\sim 65^{\circ}$

MAMI e scattering facility (University of Mainz, Germany)

Bates and Mainz Strategy

- A detailed measurement at one Q₂ to calibrate reaction and Models
 - u Measure precisely E2/C2 sensitive terms [RLT, Roo]
 - u Control background terms [RT, RTT, RLT']
 - u Make isospin separation, measure γ-channel, FPP
 - u Key Dynamical Variables: W, θ_{pq} dependence

Critical measurements at other small momentum transfers

Sensitivity to Quadrupole Amplitudes

Real photons

Proton Recoil Polarization

FPP at Bates

G. Warren et al

Bates Results

Parallel Coincident Cross section (Mertz, Vellidis et al PRL86,2963 (2001)

OOPS data on $N \rightarrow \Delta$

N. Sparveris et al PRL 94, 022003 (2005) + new

(e,e'π+) OOPS data

Preliminary

Sparveris Ph.D. Thesis (2003)

Fitting	$ M_{1+} $, Re	$E(E_{1+}/M_{1})$,),	$Re(S_{1+}/M_{1+})$
other m	ultipoles		. 0	

Truncated fit with other multipoles evaluated from model calculations

	CMR (%)	EMR (%)
(TME) _a	$-6.84 \pm 0.32_{stat+sys}$	$-3.05\pm0.40_{stat+sys}$
(TME) _{MAID}	$-6.31 \pm 0.33_{stat+sys}$	$-2.27\pm0.42_{stat+sys}$
(TME) _{DMT}	$-6.23\pm0.33_{stat+sys}$	$-1.73\pm0.42_{stat+sys}$
(TME) _b	$-6.27\pm0.32_{stat+sys}\pm0.10_{mod}$	$-2.00\pm0.40_{stat+sys}\pm0.27_{mod}$

Theoretical models adjusted to data:

✓ SAID ... fails recoil polarization measurements

✓ Aznauryan ... fail in LT below res<mark>onance</mark>

✓ Sato-Lee ... fail in LT both on and below resonance as well as in recoil polarization

	CMR (%)	EMR (%)
MAID	$-6.10\pm0.10_{stat+sys}$	$-2.30\pm0.20_{stat+sys}$
DMT	$-6.10\pm0.20_{stat+sys}$	$-1.90\pm0.20_{stat+sys}$
SAID	-4.8	-1.4
Aznauryan	$-8.00\pm0.90_{stat+sys}$	$-0.90\pm0.50_{stat+sys}$
Sato Lee	-4.3	-3.2

The role of the pion cloud

$N \rightarrow \Delta$ program (a), Mainz

Parallel Cross section

S. Stave PhD

PRELIMINARY

S. Stave PhD

PRELIMINARY

 $W = 1221 \text{ MeV} - Q^2 = 0,20 (GeV/c)^2$

M1 Transition Form Factor

$$G_M^{\bullet}(0) = \sqrt{\frac{m_N}{m_\Delta}} \,\mu_{N\Delta} = 1.006 \pm 0.010$$

 $\mu_{\scriptscriptstyle N\Delta}=3.46\pm0.03$

M1 Transition Form Factor

M1 Transition Form Factor

W=1232 MeV

CMR

W=1232 MeV

ISSUE #1 Comparison with CLAS and the Kunz point

- Is there a problem with the Kunz point?
- Can the disagreement between the CLAS and Bates be cured ?

Comparison of Kunz 3D and 4D LT results.

σ_{LT} as a function of Q² versus models

(Kunz results from 51° extrapolated to 54°) (Mainz result from 57° extrapolated to 54°)

$\sigma(\Phi_{pq}=135^{\circ})$ Bates & Mainz preliminary results

<u>σ</u>_{LT}, kunz and Mainz preliminary

Comparison of kunz and CLAS

JLab

Bates

4 MAID2003 DMT Kunz $4D = 2,83 \pm 0,22 \pm 0,14$ σ Sato-Lee Kunz $3D = 2,45 \pm 0,13 \pm 0,13$ 4U 30 2 Kunz σ_0 in good W=1.232 10 agreement with CLAS 0 σ_{TT} -10 $\left(\right)$ -20 σ_{LT^2} -2 $^{-2}$ -0.50 0.5 COS O* -0.50.5 COS O*

Mainz: Elsner et al (nucl ex/0507014)

	$\frac{\Re\{S_{1+}^{*}M_{1+}\}}{ M_{1+} ^2}$ (%)	$\frac{\Re\{S_{0+}^*M_{1+}\}}{ M_{1+} ^2}$ (%)
from eqs. (7,8)	-4.78 ± 0.69	0.56 ± 3.89
Maid2003 re-fit	-6.15±1.40 _{fit}	$6.27 \pm 2.15_{fit}$
Maid2003	-6.65	7.98
Sato/Lee	-4.74	5.14

Fig. 4. Results for $\Re\{S_{1+}^*M_{1+}\}/|M_{1+}|^2$ with statistical and systematical errors as extracted from this experiment using both the approximation of eq. (7) (open cross) and the full MAID2003 analysis (full cross), compared to measurements. Data where only statistical errors are given: DESY [31] (open square), NINA [32] (open circles), Bonn synchrotron [40] (open triangle tip up) and ELSA [27] (full triangle tip down). Data, where statistical and systematical errors are given: ELSA [28] (full circle, to improve the presentation shiftet from $Q^2=0.201$ (GeV/c)² to $Q^2=0.221$ (GeV/c)²), MAMI [24] (open diamond), CLAS [21] (full triangles) and BATES [29,30] (full square). The curves show model calculations MAID2003 [18] (solid), DMT2001 [12] (dashed) and Sato/Lee [13] (dashed dotted).

Lattice Results: CMR

Lattice Results Alexandrou et al PRD 66, (2002) 094503 PRL 94, (2005) 021601

Linear extrapolation in m_{π}^2 to obtain results at the chiral limit

Discrepancy at low Q² where pion cloud contributions are expected to be important

Chiral extrapolation

V. Pascalutsa and M. Vanderhaeghen, hep-ph/0508060

Chiral perturbation expansion calculation (Pascalutcha & Vanderhaegen)

FIG. 2: (Color online) χEFT NLO results for the Θ_{π} dependence of the $\gamma^* p \to \pi^0 p$ cross sections at $\sqrt{s} = 1.232$ GeV and $Q^2 = 0.127$ GeV². The theoretical error bands are described in the text. Data points are from BATES experiments [3, 21].

Latest Compilation of Bates Data

Concluding Remarks on the N- Delta Program

Reduce Model Uncertainty

Richer and of higher precision data basis Understand the Reaction Mechanism Get the signature of the pion cloud Q^2 dependence

Need improved phenomenology and theoretical calculations

Impressive progress in both theory & experiment Precise results are emerging and access to the physics of interest for the first time is undisputed.

"The Shape of Hadrons"

Athens, Greece April 27-30 2006

Advisory Committee Larry Cardman Dieter Drechsel Xiangdong Ji Harry Lee Ulf Meissner Richard Milner John Negele Dan Riska Thomas Walcher

