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Motivation

Meson photoproduction explores the heart of
baryons,

Where are the missing resonances?

Static properties of known/missing
resonances?

Role of external dynamics?

Which degrees of freedom are relevant?

OR

How does the transition occur?

New accurate experimental DATA:
[JLAB] J.W.C. McNabb et al., PRC 69 (2004) 042201.

[SAPHIR] K.H. Glander et al., EPJA 19 (2004) 251.
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Motivation

Some points to care about:

Which resonances do we include?

Can we fit all sectors at the same time?
πN − πN, γN → πN, K+Λ → K+Λ, ...

Inconsistencies in the data?

Can we pin down the set of “most” relevant
resonances?
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Experimental status

The recent data we are considering are:

Experiment Observable # of data points

JLab dσ/dΩ 920

LEPS Σγ 44

SAPHIR dσ/dΩ 720

JLab ΣΛ 233

J.W.C. McNabb et al., Phys. Rev. C 69, 042201 (2004).

J.W.C. McNabb, PhD Thesis, CMU (2002); R. Bradford, PhD Thesis, CMU (2005)

K.H. Glander et al., Eur. Phys. J. A 19, 251 (2004).

Similarly one could study γp → K+Σ0

many data available
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Coupled channel model

A reaction theory is needed to properly
interpret the data:

The main two ingredients are:

A direct reaction mechanism

An account of external dynamics: coupled
channel

ShortRange

γ

p

K+

Λ

γ

p

Intermediate states

p
K+

Λ

πN, KY, etc

Short Range

Note: the complete problem should include πN, ρN, ωN, ππN, ΣN, ΛN, ηN, etc
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Coupled channel model

Our coupled channel equations are written:

Ta,b(E) = ta,b(E) + tRa,b(E) ,

with the resonant:

tRa,b(E) =
∑

N∗

i
,N∗

j

Γ̄†
N∗

i
,a(E)[G∗(E)]i,jΓ̄N∗

j ,b(E) .

and non resonant:

ta,b(E) = va,b +
∑

c

va,cGc(E)tc,b(E) ,

with the dressed vertex:

Γ̄N∗,a(E) = ΓN∗,a +
∑

b

ΓN∗,bGb(E)tb,a(E) ,
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Coupled Channel Assumptions

On the previous formalism we then make
the following assumptions:

we keep:

γp π+n, π0p K+Λ,K+Σ0

the resonance propagator is taken as:
1

E−MN∗+i
Γtot(E)

2

It is thus a first approach to the problem.
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Photoproduction

the photoproduction process is described by:

a
γN→KY
`± (qKY , k) =

b
γN→KY
`± (qKY , k)

+

∑
α=KY

∫
dpαp2

α tα→KY
`± (qKY,k)G0α(pα)bγN→α

`± (pα,k)

+

∑
α=πN

∫
dpαp2

α tα→KY
`± (qKY,k)G0α(pα)bγN→α

`± (pα,k)

where KY, πN refer to the different channels.

Multistep processes can be isolated
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Meson Baryon

Meson-baryon pieces:

πN → πN: Sato-Lee model for vπN,πN

and then compute t̂πN

πN → KY and KY → KY ,same method as
Sato-Lee, W.-T. Chiang et al. (2004) with improvements.
Note: there is no data for KY → KY

Pion photoproduction:

Resonance part from Capstick-Roberts quark
model

Non-resonant defined as SAID minus resonant
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Meson Baryon

The meson-baryon t-matrix:

tKY,KY = veff
KY,KY +

X

KY

veff
KY,KY GKY tKY,KY

tKY,πN = [vKY,πN + tKY,KY GKY vKY,πN ]

× [1 + GπN t̂πN,πN ] .

where

veff
KY,KY = vKY,KY +

X

πN

vKY,πN GπNveff
πN,KY

with

veff
πN,KY = vπN,KY +

X

πN

t̂πN,πNGπN vπN,KY

The pure πN scattering t-matrix t̂πN,πN in the above equations is

defined by

t̂πN,πN = vπN,πN + vπN,πN GπN t̂πN,πN .
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γp → K+
Λ direct

The direct contributions:
tγp→K+Λ are obtained in the
quark model (Li-Saghai) Z. Li, PRC (1995); B. Saghai, Z. Li, EPJA (2001).

γ

K+

p Λ
p p Λ

Λ

K+

K+

Λ∗, Σ∗

K∗

γ γ

(a)(a)

(b) (c)

p

The resonance term includes:
N:
P11(1440), S11(1535), S11(1650), P11(1710), D13(1520), D13(1700),
P13(1720), P13(1900), D15(1675), F15(1680), F15(2000)
and
∆: S31(1900), P31(1900), P33(1920), D33(1700)
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Our strategy

The procedure followed has been:

Compute t̂πN with vπN from Sato-Lee

Construct the πN → KY potential and fit
the available data

Build resonant γp → πN from
Capstick-Roberts

Calculate direct mechanisms for γp → K+Λ

Find quark model SU(3) breaking parameters
only with direct model

Compute full coupled channel model and
refit parameters of the direct part
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Note on parameters

First the SU(3) quark model is used for the
resonance terms.

we introduce a SU(3) breaking parameter for
each resonance

To study new resonances we include a 3rdS11 and
a 3rdP13

The meson-baryon part is kept fixed
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πN → KY : dσ/dΩ

→ K0Λ → K0Σ0

0

20

40

60

80

100

Baker
Knasel

0

20

40

60

80

100

dσ
/d

Ω
 (

µb
/s

r)

-1 -0.5 0 0.5 1
0

20

40

60

80

100

Saxon

-1 -0.5 0 0.5 1
cos(Θ)

-1 -0.5 0 0.5 1

W=1.661 GeV W=1.683 GeV W=1.724 GeV

W=1.758 GeV W=1.847 GeV W=1.879 GeV

W=2.059 GeV W=2.159 GeV W=2.259 GeV

0

10

20

30

40

0

10

20

30

40

dσ
/d

Ω
 (

µb
/s

r)

-1 -0.5 0 0.5 1
0

10

20

30

40

-1 -0.5 0 0.5 1
cos(Θ)

-1 -0.5 0 0.5 1

W=1.724 GeV W=1.758 GeV W=1.792 GeV
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Parameters in the meson-baryon potential
are varied to reproduce the experimental data
R.D. Baker et al, NP(1978); T.M. Knasel et al, PRD (1975);

D.H. Saxon et al. NPb (1980); J.C. Hart et al. NPB (1980)
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πN → KY : Asymmetry

The asymmetries are defined as: Σ ∝ σ⊥
−σ||

σ⊥+σ||

→ K0Λ → K0Σ0

-1

-0.5

0

0.5

1

1.5

-1

-0.5

0

0.5

1

1.5

A
sy

m
m

et
ry

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1
cos(Θ)

-1 -0.5 0 0.5 1

W=1.661 GeV W=1.683 GeV W=1.724 GeV

W=1.758 GeV W=1.847 GeV W=1.879 GeV

W=2.059 GeV W=2.159 GeV W=2.259 GeV

-1

-0.5

0

0.5

1

1.5

-1

-0.5

0

0.5

1

A
sy

m
m

et
ry

-1 -0.5 0 0.5
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5
cos(Θ)

-1 -0.5 0 0.5 1

W=1.724 GeV W=1.758 GeV W=1.792 GeV

W=1.847 GeV

W=1.879 GeV W=1.966 GeV

W=2.059 GeV

W=2.159 GeV

W=2.259 GeV

The achieved understanding of the πN → KY
is enough for our purposes.
future data on KY − KY would help to further
constrain the model
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γp → K+
Λ cross sections

dσ
/d

Ω
 (µ

b/
sr

)
1.75 2 2.25

W (GeV)

θ=110

θ=98

θ=75

Red: JLAB

Black: SAPHIR

-Discrepancies in
the two data sets
-We choose to fit
them independently

Most relevant:
S11(1535), S11(1650), F15(1680)

P13(1720), P13(1900), F15(2000)

Model A: Solid line, JLAB data

Model B: Dashed line, SAPHIR data
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Coupled channel effects

0

0.1

0.2

1.75 2 2.25
W (GeV)

0
0.1
0.2
0.3

dσ
/d

Ω
  (

dµ
/s

r)

θ=110

θ=92

Solid: Model A
Dashed: ” w/o CC

Large CC effects
which could be hidden in coupling

values in other approaches

Confirms prev. results
(WTChiang et al 2000)

Similar effect for most angles
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Effects on N ∗ properties
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Bare:the resonance is directly excited
by the incident photon

Dressed:The photon first excites a πN
intermediate state
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Polarization data
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γ polarized

We did not include
polarization data on
Models A (solid) and
B (dashed)

Very few data
Polarization data are more

sensitive to the precise

resonance content

Widely different results

in recent studies:

V. Shklyar et al. nucl-th/0505010;

D. G. Ireland et al NPA (2004).
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Polarization data
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Λ polarized

- Unused to constrain models,

up to now

- Peculiarity: Model B does a

better job (Saphir)

in progress: include them in

minimization
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Looking for 3rdS11 and 3rdP13

Model A and B include a 3rdS11 and a 3rdP13.

The fitted values, in the ranges
(1.6-2 GeV and 1.6-2.4 GeV)

1.75 2 2.25
W (GeV)

0

0.1

0.2

dσ
/d

Ω
 (

µb
/s

r)

(θ=98 deg) Solid, dotted and dashed:

full Model A, Model A w/o 3rdS11 Model A w/o 3rdP13.

Effect from 3rdP13

very small
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Looking for 3rdS11

Our fitted values are:

New Resonances

Model A Model B

S11 Mass (GeV) 1.820 1.818

Width (MeV) 210 270

P13 Mass (GeV) 2.053 2.045

Width (MeV) 158 390

similar mass in both models, different widths
other 3rdS11 are

Mass (GeV) Width (MeV) Comment Ref.

1.780 280 CQM applied to γp → ηp Saghai-Li (2003)

1.835 246 CQM, applied to γp → K+Λ data from SAPHIR Saghai (2003)

1.852 187 CQM, applied to γp → K+Λ data from JLab Saghai (2003)

1.730 180 KY molecule Li-Workman (1996)

1.792 360 πN and ηN coupled-channel analysis Zagreb group (2000)

1.800 165 J/Ψ decay Bai (2001)

1.861 Hypercentral CQM Giannini et al (2003)

1.846 Pion photoproduction coupled-channel analysis Chen et al (2003)
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Effect of 3rdS11
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Summary

K+Λ photoproduction

Important for new resonances
Also to settle known resonances
However, its analysis is involved

Our study
Coupled channel formalism
SL unitarization scheme for meson-baryon
Quark Model for bare amplitudes
Fit to the available data

Analysis of the results
CC effects are sizeable
Preference for a 3rdS11

Near Future
Effect of other missing resonances
Study of γp → K+Σ0
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