Baryon Structure and Spectroscopy

Anthony W. Thomas Workshop on Baryon Spectroscopy ANL : August 29th, 2005 Thomas Jefferson National Accelerator Facility

- The QCD Vacuum
- Quarks to Hadrons
- Measurements of Nucleon Form Factors
- Latest Results on Strangeness
- Modeling Hadron Structure
- Baryon Excited States

Thomas Jefferson National Accelerator Facility

Powerful Qualitative New Insights From Lattice QCD

QCD sum rules :

$$\begin{split} \left\langle 0 \left| \frac{\alpha_s}{\pi} G^i_{\mu\nu} G^i_i \right| 0 \right\rangle &= \left\langle 0 \left| \frac{2\alpha_s}{\pi} \left(B^2 - E^2 \right) \right| 0 \right\rangle \\ &= (350 \pm 30 \text{ MeV})^4, \end{split}$$

 Non-trivial topological structure of vacuum linked to dynamical chiral symmetry breaking

 There are regions of positive and negative topological charge

BUT they clearly are <u>NOT spherical</u>

• NOB are they weakly interacting!

Thomas Jefferson National Accelerator Facility

Quark Condensate

$$\langle \bar{u}u \rangle = \langle \bar{d}d \rangle = \langle \bar{s}s \rangle = -(225 \pm 25 \text{ MeV})^3$$

at a renormalization scale of about 1 GeV.

σ commutator measures chiral symmetry breaking \approx valence + pion cloud +

volume * (difference of condensate in & out of N)

and last term is as big as 20 MeV (or more) i.e. presence of nucleon "cleans out" vacuum to some extent

Hence: Model independent LO term for in-medium condensate

$$\frac{Q(\rho_B)}{Q_0} \simeq 1 - \frac{\sigma_N}{f_\pi^2 m_\pi^2} \rho_B$$

BUT this has no new physics at all!

Thomas Jefferson National Accelerator Facilit

Lattice QCD Simulation of Vacuum Structure

<r> = 0.16 fm

Leinweber, Signal et al.

Thomas Jefferson National Accelerator Facility

'al Extrapolation Under Control when Coefficients Known – e.g. for the nucleon

FRR give same answer to <<1% systematic error!

	Bare Coefficients				Renorm			
Regulator	a_0^{Λ}	a_2^{Λ}	a_4^{Λ}	Λ	c_0	c_2	c_4	m_N
Monopole	1.74	1.64	-0.49	0.5	0.923(65)	2.45(33)	20.5(15)	0.960(58)
Dipole	1.30	1.54	-0.49	0.8	0.922(65)	2.49(33)	18.9(15)	0.959(58)
Gaussian	1.17	1.48	-0.50	0.6	0.923(65)	2.48(33)	18.3(15)	0.960(58)
Sharp cutoff	1.06	1.47	-0.55	0.4	0.923(65)	2.61(33)	15.3(8)	0.961(58)
Dim. Reg. (BP)	0.79	4.15	+8.92	-	0.875(56)	3.14(25)	7.2(8)	0.923(51)

Leinweber et al., PRL 92 (2004) 242002 Thomas Jefferson National Accelerator Facility

Convergence from LNA to NLNA is Rapid – Using Finite Range Regularization

Regulator	LNA	NLNA	
Sharp	968	961	
Monopole	964	960	
Dipole	963	959	
Gaussian	960	960	
Dim Reg	784	884	

M_N in MeV

Thomas Jefferson National Accelerator Facility

Comparison with χ QSM

CBM: Leinweber et al., Phys.Rev.D61:074502,2000

Office of

U.S. DEPARTMENT OF ENERGY

cience

Thomas Jefferson National Accelerator Facility

Analysis of pQQCD ρ data from CP PACS

Thomas Jefferson National Accelerator Facility

Infinite Volume Unitary Results

All 80 data points drop onto single, well defined curve

JLAB: Unique Capabilities for Investigating QCD in the Non-Perturbative Regime

Providing ~2300 international users with a unique electron beam, three experimental halls, and computational and theory support

JLab is a world leader in SRF technology: SNS, 12 GeV Upgrade, FEL, RIA, and others in the Office of Science 20-Year Facilities Outlook

Superconducting rf (SRF) technology makes the circulating accelerator feasible

High luminosity, high resolution detectors in Halls A, B, and C.

Thomas Jefferson National Accelerato Facility

Precision Tests of Nucleon Structure

 Astonishing discovery concerning proton electric form factor

But what about contribution from non-valence quarks

- especially strange quarks ?

Thomas Jefferson National Accelerator Facility

Strangeness Widely Believed to Play a Major Role – Does It?

As much as 100 to 300 MeV of proton mass:

 $M_N = \langle N(P)| - \frac{9\,\alpha_s}{4\,\pi} \operatorname{Tr}(G_{\mu\nu}G^{\mu\nu}) + m_u \bar{\psi}_u \psi_u + m_d \bar{\psi}_d \psi_d + m_s \bar{\psi}_s \psi_s |N(P)\rangle$

 $\Delta M_N^{s-quarks} = \frac{ym_s}{m_u + m_d} \sigma_N$ 45 ± 8 MeV (or 70?) Hence 110 ± 110 MeV (increasing to 180 for higher σ_N)

 Through proton spin crisis: As much as 10% of the spin of the proton

• HOW MUCH OF THE MAGNETIC FORM FACTOR?

 $y=0.2 \pm 0.2$

Thomas Jefferson National Accelerator Facility

A4 at Mainz

Thomas Jefferson National Accelerator Facility

G0 Experiment at Jefferson Lab

Thomas Jefferson National Accelerator Facility

World Data @ $Q^2 = 0.1 \text{ GeV}^2$

 $G_{E}^{s} = -0.013 \pm 0.028$ $G_{M}^{ss} = +0.62 \pm 0.31$

Contours

⁻⁻⁻⁻ 1σ, 2σ — 68.3, 95.5% CL

Theories

- 8. Leinweber, et al. PRL 94 (05) 212001
- 9. Lyubovitskij, et al. PRC 66 (02) 055204
- 10. Lewis, et al.
 - PRD 67 (03) 013003
- 11. Silva, et al.

Significance & Comparison with Lattice QCD

- Size and sign of the strange magnetic moment is astonishing!
- Experimental isoscalar nucleon moment is 0.88 μ_N c.f. this result which is (Beck) - 0.54 μ_N : i.e. - 60% !!
- Also remarkable versus lattice QCD which gives

+0.03 \pm 0.01 μ_{N} (Leinweber et al., PRL 94 (2005) 212001)

Sign would require violation of universality of

valence quark moments by \sim 70% !

Thomas Jefferson National Accelerator Facility

Convergence LNA to NLNA Again Excellent (Effect of Decuplet)

U.S. DEPARTMENT OF ENERGY

Thomas Jefferson National Accelerator Facility

"Back of the Envelope" Estimate

- Nowhere that current quark masses enter dynamics
 always constituent quark masses
- Hence s-sbar pair costs 1.0-1.1 GeV plus KE
- . K Λ costs 0.65 GeV plus KE (and coupling $\sim \pi$ N) (K- Σ much smaller \Rightarrow ignore)

. Lots of evidence that $P_{\pi N} \sim 20\% \Rightarrow P_{K\Lambda} \sim 5\%$ $G_{M}^{s} \approx -3 \times P_{K\Lambda} \times [2/3 (+0.61 + 1/3) + 1/3(-0.61 + 0)]$

\approx -0.067 μ_N Remarkably close to lattice estimate!

U.S. DEPARTMENT OF ENERGY

Thomas Jefferson National Accelerator Facility

World Data @ $Q^2 = 0.1 \text{ GeV}^2$

 $\begin{array}{l} G_{E}^{s}=-0.013\pm0.028\\ G_{M}^{s\,s}=+0.62\pm0.31\\ \pm0.62\ 2\sigma\\ \underline{Contours}\\ \\ \hline 1\sigma, 2\sigma\\ \underline{-68.3, 95.5\%}\ CL \end{array}$

<u>Theories</u>

- 8. Leinweber, et al. PRL **94** (05) 212001
- 9. Lyubovitskij, et al. PRC 66 (02) 055204
- 10. Lewis, et al.
 - PRD 67 (03) 013003
- 11. Silva, et al.

HAPPEx: Parity Violation on ¹ H and ⁴ He

3 GeV beam in Hall A // $\theta_{lab} \sim 6^{\circ}$ // $Q^2 \sim 0.1$ (GeV/c)²

target	A_{PV} $G^{s} = 0$ (ppm)	Stat. Error (ppm)	Syst. Error (ppm)	sensitivity
1 H	-1.6	0.08	0.04	$\delta(G_{F}^{s}+0.08G_{M}^{s})=0.010$
4He	+7.8	0.18	0.18	/δ(G ^s _F) = 0.015

Septum magnets (not shown) High Resolution

Brass-Quartz integrating detector

Baryon Masses in Quenched QCD

Chiral behaviour in QQCD quite different from full QCD η' is an additional Goldstone Boson , so that:

 $m_{N} = m_{0} + c_{1} m_{\pi} + c_{2} m_{\pi}^{2} + c_{3} m_{\pi}^{3} + c_{4} m_{\pi}^{4} + m_{\pi}^{4} \ln m_{\pi} + \dots$

and π

N

N

Thomas Jefferson National Accelerator Facility

N

Extrapolation Procedure for Nucleon in QQCD

Coefficients of non-analytic terms again model independent

(Given by: Labrenz & Sharpe, Phys. Rev., D64 (1996) 4595)

Thomas Jefferson National Accelerator Facility

Δ in QQCD

•Lattice data (from MILC Collaboration) : red triangles •Green boxes: fit evaluating σ 's on same finite grid as lattice •Lines are exact, continuum results

Qperated by the Southeastern Universities Research Association for the U.S

Confirmation of Predicted Behavior of Δ

Zanotti et al., hep-lat/0407039

Thomas Jefferson National Accelerator Facilit

Decuplet-Octet Mass Splitting (QQCD)

Fig. 13. Decuplet (M_D) - octet (M_O) baryon mass splittings for the FLIC-fermion action on a $20^3 \times 40$ lattice with a = 0.132 fm.

Zanotti et al., hep-lat/0407039

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of

ollorson

These results suggest following conjecture

IF lattice scale is set using static quark potential (e.g. Sommer scale) (insensitive to chiral physics)

Suppression of Goldstone loops for $m_{\pi} >$ implies: Analytic terms (e.g. + $m_{\pi}^2 + \gamma m_{\pi}^4$) representing "hadronic core" are the same in QQCD & QCD

Can then correct QQCD results by replacing LNA & NLNA behaviour in QQCD by corresponding terms in full QCD

Quenched QCD is then no longer an "uncontrolled approximation" !

Octet Masses

Fit quenched data with : $+ m_{\pi}^2 + \sigma_{QQCD}$; then $\sigma_{QQCD} \rightarrow \sigma_{QCD}$

Towards a New Quark Model

- Traditionally Constituent Quark Models for light quarks OMIT effects of Goldstone boson loops!
- OR assume they are included in effective parameters
- Simply not tenable any longer !
- Pion loops: $\delta M_N \sim 300 \text{ MeV} /// / value for <math>\delta M_A$
- . LNA term in n: $\mu_n = \alpha m_{\pi} \sim 0.6 \mu_N$ is 1/3rd of physical $\mu_n!$
- . LNA term in $< r^2 >_p$ is \sim 1 fm 2 at m $_{\pi}$ phys

Chiral Extrapolation Connects CQM to Physical Data

 Calculate CQM magnetic moments at M (strange) +/- 20 MeV (use exact SU(6) symmetry)

Use Pade approximant to extrapolate to physical quark mass

Operated by the Southeastern Universities Research Association for the U.S.

omas Jefferson National Accelerato Facility

Test for ALL hadron models!

The availability of information from (lattice) QCD on the behaviour of hadron properties as a function of current quark mass suggests a very useful test for all models !! Iet Goldstone boson masses scale as for GMOR let "constituent quark mass" M ~ M₀ + c m_a calculate variation of all hadron masses with m_q masses must be linear above 50 MeV! magnetic moments must ~ 1/M above 50 MeV!

etc... and compare with lattice data directly

ELY POWERFUL CONS

Caution in Interpreting Lattice Output

Baryon Spectroscopy: N*(1535) ¹/₂-

Thomas Jefferson National Accelerator

Office of

U.S. DEPARTMENT OF ENERGY

nce

Qperated by the Southeastern Universities Research Association for the U.S

Oscillator-type Spectrum

Melnitchouk et al., hep-lat/0202022

Thomas Jefferson National Accelerator Facility

E Baryons

Thomas Jefferson National Accelerator Facility

Spin 3/2 Non-Strange Baryons

FIG. 5: Masses of the spin projected N_{2}^{3-} (filled triangles), N_{2}^{3+} (filled inverted triangles), N_{2}^{1+} (filled circles), and N_{2}^{1-} (filled squares) states. For comparison, previous results from the direct calculation of the N_{2}^{1+} (open circles) and N_{2}^{1-} (open squares) from Ref. [9] are also shown. The empirical values of the masses of the N_{2}^{1+} (939), N_{2}^{1-} (1535), N_{2}^{3-} (1520) and N_{2}^{3+} (1720) are shown on the left-hand-side at the physical pion mass.

Zanotti et al., hep-lat/0304001

Thomas Jefferson National Accelerator Facility

First Positive Parity Excited State?

Leinweber et al., hep-lat/0406032

Thomas Jefferson National Accelerator Facility

Roper Still a Mystery

Mathur et al., hep-lat/0306199

Thomas Jefferson National Accelerator Facility

Transition form factor γp P₁₁(1440)

Transition from meson-cloud behavior to_l quark core behavior ?

- \sim UIM analysis of CLAS p π^0 , n π^+ , data
- Low Q² behavior consistent with meson-cloud model
- High Q² behavior consistent with small quark core
- Roper amplitudes not consistent with gluonic excitation??

Thomas Jefferson National Accelerator Facility

Form Factors

Origin of Cloudy Bag Model was observation that (in 1979) there were two ways to generate the Δ

- Iterate crossed π N Born graphs (Chew-Low mechanism)
- Quark Model State which couples to π N

In general any resonance can be generated by multiple scattering with phenomenological interactions

BUT by requiring that the pion-baryon form factors come from the same underlying quark model there is a unique answer – 3-quark state dominates

We now know that these form factors must be such that pion couplings are suppressed when $m_{\pi} > 500 \text{ MeV}$

Thomas Jefferson National Accelerator Facility

Pentaquark Publicity 2003

Operated by the Southeastern Universities Research Association for the U.S. Department of

U.S. DEPARTMENT OF ENERGY

New Claims Since April 2005

- STAR Collaboration (Θ⁺⁺)
 - Ma, APS Meeting, Tampa, FL April 2005.
 - Huang, International Conference on QCD and Hadronic Physics, Beijing, June 20, 2005.

- SPring-8 $\gamma d \rightarrow \Theta^+ \Lambda(1520)$
 - Nakano, International Conference on QCD and Hadronic Physics, Beijing, June 20, 2005.

Thomas Jefferson National Accelerator Facility

Office of

U.S. DEPARTMENT OF ENERGY

ellerson C

High Statistics CLAS result - g10

Thomas Jefferson National Accelerator Facility

- Two distributions statistically consistent with each other:
 - 26% c.l. for null hypothesis from the Kolmogorov test (two histograms are compatible).
 - Reduced χ²=1.15 for the fit in the mass range from 1.47 to 1.8 GeV/c²
- G10 mass distribution can be used as a background for refitting the published spectrum.

Operated by the Southeastern Universities Research Association for the U.S. Department of

llerson C

Comparison of g11 with SAPHIR

High Resolution Search for Q+(1540) Partners in JLab/Hall A

Search for narrow resonances in the mass range 1.5-1.8 GeV/c², motivated by popular pentaquark models:

U.S. DEPARTMENT OF ENERGY

Σ⁰ Search

U.S. DEPARTMENT OF ENERGY

and just in case you think you understand...

Lattice QCD study* of spin-3/2 pentaquark show mass compared with p-wave NK system

* hep-lat/0405015: Lasscock et al. [CSSM- Jlab Collaboration]

Thomas Jefferson National Accelerator Facility

Operated by the Southeastern Universities Research Association for the U.S. Department of

efferson C

Excited-Baryon Analysis Center

A proposal for the establishment of an excited-baryon analysis center at JLab HP 2009

- Role: To develop theoretical tools (e.g. coupled channel; EFT) to analyze existing & future CLAS (and other) data
- Scientific relevance:
 - i) identify new baryon resonances
 - ii) measure couplings & transition form factors
 - iii) comparison with LQCD
 - iv) deepen understanding of how QCD is realized
- Critical theoretical issues:
 - i) background-resonance separation
 - ii) incorporation of multi-particle final states
 - iii) importance of unitarity, analyticity...

Proposed Structure of EBAC

S&T Review 2003: "A critical need in the overall JLab program is to have a systematic effort dedicated to analysis of photo- and electro-production of baryons and mesons. The theory group, in concert with the needs of the experimental collaborations, has begun to formulate a plan to establish an N^{*} Analysis Center. We applaud this long-needed initiative."

After 2004 S&T Review: proposal to DOE

- Senior theorist with a broad knowledge of hadronic and electromagnetic interactions, reaction theory, and the methods used in phenomenological analysis
- Mid- and junior-level staff positions and term/visiting positions for theorists and experimentalists to advance the program and to interface with relevant groups. Strong workshop/visitor program.
- Independent, expert Scientific Advisory Board

Thomas Jefferson National Accelerator Facility

Qperated by the Southeastern Universities Research Association for the U.S. Department of

Tellerson Pab