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Abstract

ptolemy is a program for the computation of nuclear elastic and direct-reaction cross
sections. It carries out optical-model fits to elastic-scattering data at one or more energies
and for one or more combinations of projectile and target, collective model DWBA cal-
culations of excitation processes, and finite-range DWBA calculations of nucleon-transfer
reactions. It is fast and does not require large amounts of memory. The input is ex-
ceptionally flexible and easy to use. This report outlines the types of calculations that
ptolemy can carry out, summarizes the formulas used, and gives a detailed description
of its input.



Chapter 1

Introduction

ptolemy is a program for fitting optical-model potentials to elastic scattering data, and
for the computation of the Distorted Wave Born Approximation to nuclear direct-reaction
amplitudes. Either the collective-model DWBA for inelastic excitation or the finite-range
DWBA for transfer reactions may be computed. No use is made of approximations that
rely on the short range of nuclear interactions (e.g. zero-range and no-recoil approxima-
tions). ptolemy is specifically designed for heavy ion reactions but is nonetheless very
efficient for light ion reactions. Advantages of ptolemy over other DWBA codes include
high speed, low core requirements, and ease of use.

ptolemy derives its speed and compactness from several design features:

1. Substantial effort has been put into the development of the subroutine that picks the
three-dimensional integration grid that is used in the DWBA transfer calculations.
This subroutine makes use of the bound state form factor and the properties of the
scattering wavefunctions. This efficiently chosen integration grid results in the need
for relatively small numbers of integration points; as an example, a grid consisting
of 24 × 10 × 10 points will give accuracies of 1 or 2 percent for many heavy-ion
reactions at moderate energies.

2. In high-energy heavy-ion DWBA transfer calculations, the scattering waves oscillate
rapidly while the form factor varies slowly. However the computation of the form
factor is the most time consuming aspect of the calculation. Therefore the form
factor is computed on a coarse grid and interpolated to the finer grid needed for the
integrals involving the scattering waves. This interpolation results in a reduction in
the total computer time by a factor of two to five in typical heavy-ion calculations.

3. Interpolation and extrapolation in L-space is used to reduce the number of radial
integrals that must be computed. Interpolation is achieved by fitting a continued
fraction to the computed values, while the exponential form of the radial integrals
for large L is used for extrapolation. For Oxygen on Lead reactions, a time savings
of 80% is realized by this method.

4. The calculation of the angular transforms in transfer reactions has been imple-
mented using cosines instead of spherical harmonics. This approach avoids the
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large numerical cancellations that occur in the more conventional Legendre decom-
position methods if the exchanged orbital angular momentum is relatively large.
A specially designed in-line cosine routine and iterative evaluations of cosines are
used to reduce the cosine computation time.

5. The Coulomb terms of the inelastic excitation amplitudes are computed using re-
cursion relations in L. The starting values for the recursion relations are generated
using Belling’s asymptotic expansion for integrals of Coulomb wavefunctions and
powers of r. A new asymptotic expansion of Coulomb wavefunctions for large ar-
gument is used in these calculations. The result of these techniques is a high speed
program for the Coulomb excitation in which it is not necessary to be concerned
with either orbital angular momentum or radial cut-offs.

6. The optical-model potential fitting part of ptolemy uses state-of-the-art minimiza-
tion routines that make specific use of the sum of squares property of the function
(χ2) being minimized. The gradients required by these minimizers are computed
analytically.

7. The computation of the transfer amplitudes has been factored into segments in such
a way that the recomputation of the same quantities is held to a reasonable (al-
though not absolute) minimum without the need for extremely large tables. Scratch
files are not used in any part of the program.

8. All arrays used in a ptolemy calculation are stored in a section of memory referred
to as the allocator. Space in the allocator is reused when the data contained in it
is no longer needed.

The result of these and other features is a very fast program for the finite-range
DWBA. Calculations require only a matter of seconds on modern computers.

In addition to its great speed, ptolemy provides the user with an especially simple
form of input. The input is designed to be flexible, tolerant of minor syntactical variations,
concise and easy to remember. Extensive checking of the input is carried out in an effort
to allow the same problem to be stated in a variety of ways and to eliminate the chance
of calculations being made with undefined or otherwise unexpected parameters. In the
following sections it will become evident that many quantities may be defined in more
than one way. Often there will be the possibility of a direct specification of a parameter
that can also be determined by ptolemy from other input. In most cases if the user
explicitly specifies the value, ptolemy will not use the indirectly specified value nor will
it check the two values for consistency. Therefore one should avoid needless duplication
of input so that inadvertent inconsistencies do not occur. An example would be the
specification of Q after the bound state calculations – the new value of Q would be used
in determining the outgoing state scattering energy even though it might be inconsistent
with the difference of the bound state energies. (In this case a warning message would
be printed.)

Provision is made for keeping final results (radial integrals, elastic S-matrix ele-
ments, differential cross sections, etc.) in a form suitable for subsequent processing with
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Speakeasy1 This is particularly useful for the production of graphs showing the results
of one or more DWBA calculations. In addition one may use the extensive facilities of
Speakeasy to manipulate cross sections or radial integrals interactively.

In addition to the computation of DWBA cross sections, ptolemy can also be used to
fit optical potentials to elastic scattering data. The specification of the parameters to be
varied is both simple and flexible; the user does not need to write a subroutine for each fit
to be made. The method of entering data is quite general; if the user’s data is already in
a computer file, he or she will probably not need to reenter it for ptolemy. Fits to data
at several energies may be made, and several keywords are provided to give the optical
potential a dependence on the scattering energy. The user is given a choice of six different
minimum-search programs including four that use analytically computed gradients. Two
of the latter fitters work exceptionally well and 12-parameter fits to 16O+208Pb data at
five different energies may be made in only seconds..

In the next section we present the formulas used in ptolemy. The syntax used
in ptolemy’s input is described in Chapter 3. Chapter 4 describes elastic-scattering
and bound-state calculations and contains basic material (such as potential definitions)
that is used in the subsequent sections. The next three chapters (5, 6, and 7) discuss
optical model fits, inelastic excitation, and transfer reactions respectively. These three
chapters are largely independent of each other; where necessary, cross references are made.
Chapter 9 presents some of the control keywords that perform functions auxiliary to the
calculational functions. Appendix A contains a complete list of ptolemy keywords and
their default values. Appendix B contains the complete input decks for some sample jobs.

This manual does not enumerate all possible variants and interpretations of the
ptolemy input; rather it is limited to the most straightforward methods of stating
the problem to be solved. For many DWBA calculations and optical-model fits, the nec-
essary input can be inferred directly from the examples given in Appendix B, to which
the tyro is referred. The only aspect of the input that is not clear upon inspection of
these examples is the use of the PARAMETERSET keyword which is discussed on Section
4.3.

1S. Cohen and S. C. Pieper, The Speakeasy-3 Reference Manual, Argonne National Laboratory Report
ANL-8000 (1977).



Chapter 2

Summary of Formulas

This chapter contains a summary of the formulas used in ptolemy for evaluating elastic,
inelastic and transfer cross sections. Since all of the formulas are standard, no attempt
is made to present derivations.

2.1 Two-Body Channels

We will consider two particles (nuclei) referred to as the “projectile” (subscript p) and the
“target” (subscript t). For scattering states these designations will have their customary
meanings, while for bound states the only distinction is that the spin of the projectile
determines the spin-orbit force. The reduced mass is

M =
MpMt

Mp +Mt

Mµ, (2.1)

where Mp and Mt are the atomic weights of the two nuclei and Mµ is the atomic mass
unit [Eq. 2.100].

2.1.1 Bound States

The Schrödinger equation for bound states may be written as
[

− 1

r2

d

dr
r2 d

dr
+
ℓ(ℓ+ 1)

r2
+

2M

h̄2 V (r) + κ2

]

φ(r) = 0, (2.2)

where

κ =
√
−2ME/h̄, (2.3)

and E is the (negative) energy of the bound state. For large r, φ(r) tends to a Whittaker
function:1

φ(r) −−−→
r→∞

N

r
W−η,ℓ+1/2(2κr), (2.4)

1M.Abramovitz and I.A.Stegun, Handbook of Mathematical Functions (Dover, New York, 1965)

5



6 CHAPTER 2. SUMMARY OF FORMULAS

where N is a normalization constant and η is the Sommerfeld parameter for the bound
state:

η = ZpZtαMc/(h̄κ). (2.5)

The relevant combinations of the fine-structure constant α, the speed of light c, and
the Planck constant h̄ are given in Eqs.2.99 – 2.101. The bound state wave function is
real and normalized such that

∫

∞

0

drr2[φ(r)]2 = 1. (2.6)

The sign of φ(r) follows the conventions of Meyer and Jensen,2 namely φ(r) is positive
for small r.

2.1.2 Scattering States

The Schrödinger equation for scattering states is written as

[

− d2

dr2
+
ℓ(ℓ+ 1)

r2
+

2M

h̄2 V (r) − k2

]

fℓ(r), (2.7)

where the wave number is

k =
√

2ME/h̄, (2.8)

with E the center-of-mass scattering energy. If the potential contains a spin-orbit com-
ponent, the fℓ should also contain a label for the total projectile angular momentum;
we will for the moment suppress this label. The scattering wavefunctions are normalized
such that

fℓ(r) −−−→
r→∞

1

2
[(1 + Sℓ)Fℓ(η, kr) + i(1 − Sℓ)Gℓ(η, kr)],

= e+δ(cos δF + sin δG), (2.9)

where Fℓ and Gℓ are the regular and irregular Coulomb wavefunctions3 and η is the
Sommerfeld parameter:

η = ZpZtαMc/(h̄k), (2.10)

= ZpZtα

√

Mc2

2E
. (2.11)

The elastic scatting S-matrix element Sℓ is defined by Eq. 2.29.

2M.G.Mayer and J.H.D.Jensens, Elementary Theory of Nuclear Shell Structure, (Wiley, New York,
1955)

3A.Z.Schwarzchild, E.H.Auerbach,R.C.Fuller and S.H.Kahana, in
Proceedings of the Symposium on Macroscopic Features of Heavy-Ion Collisions, Argonne National
Laboratory, Report ANL/PHY-76-2, Vol.II,p.753 (1976).
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If there are no spin-dependent forces and if the particles are not identical, the elastic
scattering cross section is given by

dσ

dΩ
= |F (θ)|2 . (2.12)

If the particles are identical, but there are no spin-dependent forces, the cross section is

dσ

dΩ
=

∣

∣F±(θ)
∣

∣

2 ∓ Sp

Sp + 1/2

[

∣

∣F+(θ)
∣

∣

2 −
∣

∣F−(θ)
∣

∣

2
]

, (2.13)

where the upper signs are for Bose statistics and the lower signs are for Fermi statistics.
Here Sp is the spin of the particles. Finally, for a spin-1/2 projectile interacting with a
spinless target via a spin-orbit force, the spin-averaged cross section is

dσ

dΩ
= |F (θ)|2 + |B(θ)|2 . (2.14)

We do not consider more complicated systems with spin-dependent forces.
The amplitudes in the above equations are sums of Rutherford and nuclear compo-

nents,

F (θ) = FR(θ) + FN(θ), (2.15)

FR(θ) = − η

2k[sin(1/2θ)]2
e2i[σ0−η ln sin( 1

2
θ)], (2.16)

FN(θ) =
1

2ik(2SP + 1)

∑

ℓ,j

(2j + 1)(Sℓ,j − 1)e2iσℓPℓ,0(cos θ), (2.17)

F±(θ) = F (θ) ± F (π − θ), (2.18)

and

B(θ) =
1

2ik

∑

ℓ

[Sℓ,ℓ+1/2 − Sℓ,ℓ−1/2]e
2iσℓPℓ,1(cos θ). (2.19)

Here SP is the spin of the projectile and the S-matrix elements have been labeled with
both ℓ and j to allow for a spin-orbit interaction. If there is no spin-orbit force, one has

1

2SP + 1

∑

j

(2j + 1)Sℓ,j = (2ℓ+ 1)Sℓ. (2.20)

The Coulomb phase shifts are

σℓ = arg Γ(ℓ+ 1 + iη), (2.21)

and the conventions of Abramovitz and Stegun are used for the Legendre functions Pℓ,m.
In the Rutherford amplitude (Eq. 2.16) an alternative form is given by the replacement

η

2k
= ZpZtαh̄c/(4E), (2.22)



8 CHAPTER 2. SUMMARY OF FORMULAS

The total reaction cross sections are given by

σReac =
π

k2(2Sp + 1)

∑

ℓ,j

(2j + 1)(1 − |Sℓ,j|2), (2.23)

for non-identical particles and by

σReac =
2π

k2(2Sp + 1)

{

Sp

∑

ℓ

(2ℓ+ 1)(1 − |Sℓ|2) +
∑

ℓ even or odd

(2ℓ+ 1)(1 − |Sℓ|2)
}

(2.24)

for identical particles. Here the second sum is over even partial waves for Bose statistics
and over odd partial waves for Fermi statistics.

One can define a “nuclear total cross section”

σNuc =
4π

k
ImFN(0) (2.25)

for non-identical particles, and

σNuc =
4π

k(2Sp + 1)
[2SpImFN (0) + ImF±

N (0)] (2.26)

for identical particles. If there is no Coulomb force, these quantities are just the total
cross sections:

σNuc = σel + σReac (2.27)

where σel is the integral over angles of the elastic cross section. Schwarzchild et.al.
have discussed the significance of σNuc in the presence of a Coulomb force; for heavy-ion
scattering σNuc is usually quite small.

2.2 Inelastic Excitation

We consider the inelastic excitation process

A(a, b)B (2.28)

with either

b = a,B = A∗, (2.29)

for target excitation or

b = a∗, B = A, (2.30)

for projectile excitation.
The outgoing kinetic energy in the c. m. system is

Eout = Ei +Q (2.31)
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where Ei is the incoming c. m. energy and the Q value is given by

Q = EA + Ea −EB − Eb (2.32)

where the Ek are the total energies (in MeV) of the nuclear states involved:

Ek = (ZkMp +NkMn)c2 + (Mxc)k + E∗

k (2.33)

or

Ek = Eg(Zk, Nk) + E∗

k (2.34)

Zk, Nk are the numbers of nucleons in the nuclear state k; (Mxc)k is the ground state
mass excess of the nucleus with Zk protons and Nk neutrons and E∗

k is the excitation
energy if state k is excited. Eg(Zk, Nk) is the total ground-state energy (or mass×c2) of
the nucleus(Zk , Nk).

ptolemy evaluates the inelastic cross sections in DWBA using collective-model form
factors for the nuclear part of the excitation. The distorted waves are the solution of Eq.
2.7 the normalization of Eq. 2.9. These distorted waves must, of course, be separately
evaluated in the incoming [a+A] and outgoing [b+B] channels.

2.2.1 Differential Cross Section

The differential cross section at a c.m. scattering angle θ for the excitation process is
written as

dσ

dΩ
=

1

EiEout

kout

ki
RΣLxMx

∣

∣GLx

Mx
(θ)

∣

∣

2
(2.35)

where R is a spin-statistical factor:

R =
2Jb + 1

2Ja + 1
(projectile excitation)

=
2JB + 1

2JA + 1
(target excitation) (2.36)

Here ki and kout are the wave numbers (Eq. 2.8 in the incoming and outgoing channels and
Ja, Jb, JA, and JB are the intrinsic angular momenta of the four nuclei. The multipolarity
of the transition is labeled by LX .

The multipole transition amplitude may be decomposed into a term reflecting the
amount of deformation and a geometric term:

GLx

Mx
(θ) = ALx

BLx

Mx
(θ) (2.37)
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2.2.2 Geometrical Component and Effective Interactions

The “geometrical” component is

BLx

Mx
=

√
4π iLx

∑

LiLout

CLout,Lx,Li

Mx,−Mx,0 × ILi,Lout,Lx
Y Lout

−Mx
(θ, 0) (2.38)

where Y L
M(θ, φ) is a spherical harmonic and CL1,L2,L

M1,M2,M is a Clebsch-Gordan coefficient,
both defined according to Condon-Shortley conventions.

The radial integrals are given by

ILi,Lout,Lx
=

√

2Lout + 1

4π

∣

∣

∣
CLout,Lx,Li

0,0,0

∣

∣

∣
ei(σi+σout)

×
∫

∞

0

fLi
(r)HLx

(r)fLout
(r)dr (2.39)

The symbols σi and σout designate the Coulomb phase shifts σLi
(ηi) and σLout

(ηout) re-
spectively. The effective interaction H contains both nuclear and electric Coulomb con-
tributions:

HLx
(r) = HLx,N(r) + HLx,C(r) (2.40)

The nuclear component of the effective interaction is

HLx,N(r) = −βLx

βLx

[

R′
dV (r)

dr
+ iR′

I

dVI(r)

dr

]

(2.41)

where V and VI are the real and imaginary parts of an optical potential. The radii R′

and R′

I are the radii of the excited nucleus; specifically:

R′ = r0A
′(1/3)

R′

I = rI0A
′(1/3) (2.42)

where A′ = A for target excitation, A′ = a for projectile excitation. The nuclear defor-
mation parameter is βLx

so the R′βLx
and R′

IβLx
are the deformation lengths. We have

normalized the effective interaction to the average of the nuclear and Coulomb deforma-
tion parameters:

βLx
= 1/2(βLx

+ βLx,C) (2.43)

The Coulomb part of the effective interaction is derived from the multipole expansion
of the potential between a point charge and uniformly charged sphere.

HLx,C(r) =
βLx,C

β
(R′

C)λ 3ZaZAe
2

2Lx + 1











rLx

R2Lx+1
C r < Rc

R1
c

rLx+1 r > Rc

(2.44)
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where Za and ZA are the atomic numbers of the two nuclei. Note the distinction between
the Coulomb radius of the excited nucleus:

R′

C = rC0A
′(1/3) (2.45)

amd the Coulomb radius of the optical potential:

RC = rC0(a
1/3 + A1/3) (2.46)

The Coulomb deformation parameter βLx,C is related to the reduced transition rate
B(E,Lx, ↑) by

B(E,Lx, ↑) =
2Jfinal + 1

2Jinitial + 1
B(E,Lx, ↓)

=

[

3Z

4π

R′

C

10

Lx

βLx,C

]2

× (2Jfinal + 1)

(2Jinitial + 1)(2Lx + 1)
(2.47)

where B(E,Lx, ↑) is given in units of e2barnLx and R′

C is in fm. The βLx,C so defined
can be related to a nuclear deformation only for 0+ ground states; however ptolemy

correctly computes the Coulomb excitation from other ground states if the B(E,Lx, ↑) is
given.

2.2.3 Strength of Effective Interaction

The strength constant in Eq. 2.37 is given by

ALx
= βLx

/
√

2Lx + 1 (2.48)

where βLx
is defined in Eq. 2.43.

2.3 Transfer Reactions

ptolemy computes amplitudes and cross sections of nucleon-transfer reactions

A(a, b)B (2.49)

using the full distorted-wave Born approximation4 (DWBA). without further approxi-
mations based on the short range of nuclear reactions. In the incoming channel (A, a),
A is the target and a is the projectile; in the outgoing channel (B, b), B is the residual
nucleus and b is the ejectile. A, a, B, b will be used both as identifiers of the nuclear
states involved and as symbols for the total number of nucleons. The group of nucleons
transferred (or the number of transferred nucleons) will be denoted by x.
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a(b+x) b

x

A B(A+x)

Figure 2.1: Stripping Reaction

2.3.1 Possible Reactions

(i) If a > b. the reaction (Eq. 2.49) is a stripping reaction shown in Fig. 2.1.

a = b+ x B = A+ x (2.50)

(ii) If a < b, the reaction (Eq. 2.49) is a pick-up reaction as shown in Fig. 2.2.

b = a+ x A = B + x (2.51)

a b(a+x)

x

A(B+X) B

Figure 2.2: Pick-up Reaction

2.3.2 Two-Body States

Calculation of the transfer cross sections involves the combination of four elements – the
scattering wave functions in incoming (i) and outgoing (out) channels and bound-state
wave functions representing the composite nucleus at each reaction vertex. The vertex
involving A, B, and x will be referred to as the target vertex and the corresponding
bound state as the target bound state; the vertex involving a, b, and x will be referred
to as the projectile vertex and the corresponding bound state the projectile bound state.

4G.R.Satchler, in Lectures in Theoretical Physics, Vol.VIIIc (Univ. of Colorado press, Boulder, 1966).
N.Austern, Direct Nuclear Reaction Theories (Interscience, New York, 1970).
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The kinetic energies in the incoming and outgoing channels are related by Eq. 2.31 –
2.34 and the inelastic scattering distorted waves for these two channels are found using
Eq. 2.27 – 2.29; the radial variable in these equations is the position vector of the mass
center of a (or b) relative to the mass center of A (or B). We will also need elastic
scattering wavefunctions in incoming and outgoing channels,

χ+(~ki, ~ri) =
4π

kiri

∑

Li

iLifLi
(ri)

[

Y Li(r̂i) · Y Li(k̂i)
]

(2.52)

and

[χ−(~kout, ~rout)]
∗ =

4π

koutrout

∑

Lout

iLoutfLout
[Y Lout(r̂out) · Y Lout(k̂out)] (2.53)

Consider next the interaction vertices.

The Target Vertex: t = (x, Ct)

Ht Ct

x

Figure 2.3: The target vertex

Let Ct denote the core nucleus and Ht the composite (heavier) nucleus at the target
vertex as shown in Fig. 2.3

Ct = B (pick-up) Ht = A (pick-up)
= A (stripping) = B (stripping)

In either case vertex t is regarded as the break-up of the bound state Ht into its con-
stituents

Ht −→ Ct + x (2.54)

The radial variable associated with this break-up is

~rt = ~rCtx = ~rBx (pick − up)

= ~rAx (stripping) (2.55)

Introduce a complete set of states

Ψntℓt

mt
(~rt) = Φntℓt

(rt)Y
ℓt

mt
(r̂t) (2.56)

describing the bound-state wave-function of x and Ct. Here φnℓ is the bound-state radial
wavefunction defined in Eq. 2.22 – 2.24. Let the transferred nucleons have intrinsic spin
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Jx and internal quantum numbers x.5 The particles emitted (or absorbed) at vertex t
are described in terms of the functions

[Ψntℓt(~rt) × ΦxJx(ρx)]
Jt

Mt
(2.57)

where ΦxJx represents the intrinsic structure of x.
The break-up of the internal wave function of Ht into Ct + x is to be described in

terms of shell-model wave functions. This is characterized by a spectroscopic amplitude
Θ(ntℓt, xJx, Jt;Ht, Ct) defined below [Eq. 2.96 and 2.97]. The coupling schemes for the
angular momenta at vertex t are

~ℓt + ~Jx = ~Jt (2.58)

~J(t) + ~Jt = ~J(Ht) (2.59)

Equation 2.50 defines the total angular momentum Jt transferred at vertex t; Eq. 2.56
specifies how JT is divided into orbital and intrinsic components.

Projectile Vertex: p = (x, Cp)

Hp Cp

x

Figure 2.4: Projectile Vertex

As in the treatment of the target vertex, Cp denotes core, Hp composite (heavier)
nucleus. The projectile vertex is shown in Fig. 2.4.

Cp = a (pick-up) Hp = b (pick-up)
= b (stripping) = a (stripping)

Thus the vertex p describes the break-up of the bound state Hp into its constituents

Hp −→ Cp + x (2.60)

The radial variable is

~rp = ~rCpx = ~rax (pick − up) (2.61)

= ~rbx (stripping) (2.62)

The equations describing the state of the particles emitted (or absorbed) at p are obvious
analogs of Eq. 2.56 and 2.57. The equations analogous to Eq. 2.58 and 2.59 for the
angular momentum ~Jp transferred at vertex p are:

~ℓp + ~Jx = ~Jp (2.63)

~J(Cp) + ~Jp = ~J(Hp) (2.64)

5Also used for the number of transferred nucleons.
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2.3.3 Vector Transformation between Bound-State and Scatter-
ing Variables

Ignoring for the moment the internal structure of the nuclear states Cp and Ct, the transfer
reactions under consideration are (x+2)-body processes – the “bodies” are the two cores
and the x transferred nucleons. Now let the effective interaction that induces transfer be
taken to be a function of the bound-state variables ~rp, ~rt only; i. e., it is independent of
the internal coordinates ρx of x, dependent only on the position of the mass center of the
x transferred nucleons. The (x+2)-body process now becomes a 3-body process (Cp, Ct,
and x).

The natural variables for this 3-body problem are the position vectors of Cp, Ct, and
x relative to an origin in fixed space. In order to separate the center-of-mass motion,
introduce as independent variables the c.m. position vector ~R and two (any two) of
the relative variables ~ri, ~rout, ~rt, ~rp. ptolemy uses the scattering variables (~ri, ~rout) as
integration variables. The Jacobian of the transformation

(~RCt
, ~RCp

, ~Rx) → (~R,~ri, ~rout) (2.65)

is

J = α3

where

α =
HpHt

(Cp + Ct + x)x
(2.66)

and is included in the expression Eq. 2.67 for the transformation function H.
With ~ri, ~rout as independent variables, angular-momentum functions of ~rp, ~rt must be

expressed in terms of ~ri, ~rout. This involves evaluation of the coefficients H
nt,ℓt,np,ℓp

Li,Lout,Lx
(ri, rout)

of the vector transformation

α3Φntℓt
(rt)VeffΦnpℓp

(rp)
[

Y ℓt(r̂t) × Y ℓp(r̂p)
]Lx

Mx

=
∑

LiLout

(−)1/2(L+Lout+ℓp−ℓt) ×H
ntℓtnpℓp

LiLoutLx
(ri, rout)

[

Y Li(r̂i) × Y Lout(r̂out)
]Lx

Mx
(2.67)

of the bound-state product into spherical harmonics of the independent variables ~ri, ~rout.
Here Veff is the effective interaction that induces the transition. It will be defined below
[Eq. 2.85 and 2.86]; all that is of consequence here is that Veff depends only on the radial
variables. H(ri, rout) is referred to as the bound-state form factor. The strange phase
factor in Eq. 2.67 is introduced to give the phase of the radial integrals ILi,Lout,Lx

[Eq.
2.93] the following two desirable features for large values of Li and Lout (suppressing for
the moment the factor ei(σi+σout)):

1. The phase does not change by π every time Li and Lout change by unity.

2. For most reactions, the phase tends to 0 from above as both Li and Lout increase.
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2.3.4 Calculation of Bound-State Form Factor

The procedure for computation of the form factor H in (Eq. 2.67) is that of Balian and
Brézin.6 First, ~rt and ~rp must be expressed in terms of ~ri and ~rout

(

~rt

~rp

)

=

[

s1 t1
s2 t2

](

~ri

~rout

)

(2.68)

To identify the constants si, ti consider the plane triangle whose vertices are the three
basic particles Ct, Cp, and x.

ccr

Cp

Ct

rt

Ht

X
rp

Hp

Figure 2.5: Coordinates for bound-state form factor

Ht and Hp are at the mass centers of (Cp, x) and (Cp, x). The vectors ~ri and ~rout have
different identification for pick-up [Fig. 2.1] and stripping [Fig. 2.2]:

~ri = ~rAa = ~rHtCp

~rout = ~rBb = ~rCtHp

}

pickup (2.69)

~ri = ~rAa = ~rCtHp

~rout = ~rBb = ~rHtCp

}

stripping. (2.70)

Then with α defined by Eq. 2.66 and

γ =
Cp

HP
δ =

Ct

Ht
(2.71)

[

s1 t1
s2 t2

]

= α

[

−γ 1
−1 δ

]

(pick − up)

=
1

(a+B + x)x

[

−aA bA
−bA bB

]

= α

[

1 −γ
δ −1

]

(stripping)

=
1

(A+ b+ x)

[

aB −bB
aA −aB

]

(2.72)
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ri

rt rp

rout

rcc rcc

rout

ri

rt
rp

Figure 2.6: Pick-up and Stripping Coordinates

The bound-state form factor is then given by

H
ntℓtnpℓp

LiLoutLx
(ri, rout) = α3

∫ 1

−1

dxA12(ℓtℓpLiLoutLx; x)

×
{

Φntℓt
[rt(x)]VeffΦnpℓp

[rp(x)]
}

(2.73)

where

x = cosφ = r̂i · r̂out (2.74)

and rt, rp are functions of x through

rt(x) = [s2
1r

2
i + t21r

2
out + 2s1t1riroutx]

1/2

rp(x) = [s2
2r

2
i + t22r

2
out + 2s2t2riroutx]

1/2 (2.75)

The angular factor A12 in Eq. 2.73 is:

A12(ℓtℓpLiLoutLx; x) = −1

2
(−)1/2(Lout+Li+ℓp−ℓt)

× [(2Li + 1)(2Lout + 1)(2ℓt + 1)(2ℓp + 1)]1/2

×
∑

Mxµm

(

ℓt, ℓp, Lx
m, Mx −m, −Mx

) (

Li, Lout, Lx
µ, Mx − µ, −Mx

)

Λ
ℓp

Mx−mΛℓt

mΛLi

µ ΛLout

Mx−µ

× cos[mφt + (Mx −m)φp − µφ] (2.76)

where ( ) are 3j-symbols, φ is defined by Eq. 2.74, and

φt = (−)S cos−1(r̂t · r̂out) = (−)S cos−1

[

s1rix+ t1rout

rt

]

φp = (−)S cos−1(r̂p · r̂out) = (−)S cos−1

[

s2rix+ t2rout

rp

]

(2.77)

In the above, φ and cos−1 are between 0 and π and

(−)S = −1 (pickup), (2.78)

= +1 (stripping) (2.79)

6R.Balian and E.Brézin, Nuovo Cimento 61B, 403 (1969)
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Finally, *************************LINE UP*******************

Λk
q = 0

if k±q is odd,

= (−)
k + q

2

[(k + q)!(k − q)!]1/2

2k(k+q
2

)!(k−q
2

)!
(2.80)

if k±q is even.

2.3.5 DWBA Amplitude and Effective Interaction

The transfer amplitude in DWBA has the form

T (~ki → ~kout) = J

∫ ∫

d3rid
3rout[χ

−(kout, rout)]
∗

×〈B, b |Veff |A, a〉χ+(~ki, ~ri) (2.81)

where 〈Veff〉 denotes a matrix element with respect to all internal core coordinates; 〈Veff〉
is a function of ~rt and ~rp. The transition operator Veff is the part of the sum of the two-
body interactions between constituents of the colliding species in either channel that is
not contained in the optical potential in that channel. According to Eq. 2.69 and 2.70:

Veff =
∑

iǫCp

∑

jǫHt

Vij − Uopt(rCpHt
)

or

Veff =
∑

iǫCt

∑

jǫHp

Vij − Uopt(rCtHp
) (2.82)

Two standard approximations are then made.
(i) The additional particles x have little influence on the core-core optical potential.

Uopt thus describes the core-core interaction.

Uopt ≃
∑

iǫCt

∑

jǫCt

Vij (2.83)

and thus

Veff ≃
∑

iǫCp

∑

jǫx

Vij

or

Veff ≃
∑

iǫCt

∑

jǫx

Vij (2.84)

(ii) The sum of two-body interaction
∑

jǫC

∑

jǫx Vij is replaced by a one-body potential
V (~rCx) depending only on the relative position of the mass center of x to that of the core

Veff ≃ VCpx(rp)

or

Veff ≃ VCtx(rt) (2.85)



2.3. TRANSFER REACTIONS 19

It is the second approximation that reduces x-nucleon transfer to a three-body problem.
In the simplified form (Eq. 2.85) Veff can be associated with one or the other vertex.

For the one-body potential VCx, ptolemy uses the potential that binds the composite
system H at the appropriate vertex.

It is known the the approximation Eq. 2.83 is poor for the Coulomb part of the
interaction. In this case a simple correction7 can be made;

Veff = VCpx(rp) + ∆V

or

Veff = VCtx(rt) + ∆V (2.86)

where

∆V = V (rcc) − Vopt (2.87)

In Eq. 2.87, Vopt is the appropriate optical potential as indicated in the following
table:

Pick-up Stripping
Interaction at p vertex Vopt(ri) Vopt(rout)
Interaction at t vertex Vopt(rout) Vopt(ri)

V (rcc) is the optical potential between the two cores and is evaluated using the same
potential parameters as Vopt. With the Coulomb correction ∆V , Veff becomes a function
of rp, rt, and x in a fashion which adds no essential complication to the integral in Eq.
2.73.

2.3.6 Angular Momenta

The angular momenta transferred at the vertices, Jt and Jp have been defined in Eq. 2.59
and 2.64. The total transferred angular momentum Lx is defined by

~Lx + ~Jp = ~Jt (2.88)

The multipole or angular-momentum decomposition of the DWBA amplitude and cross
section is based on the total angular-momentum transfer.

2.3.7 Differential Cross Section
dσ

dΩ
(θ) =

1

EiEout

kout

ki
R

∑

JtJp

∑

LxMx

∣

∣

∣
G

Lx(JtJp)
Mx

(θ)
∣

∣

∣

2

(2.89)

where R is a spin-statistical factor:

R =
2Jb + 1

2Ja + 1
(pick − up)

=
2JB + 1

2JA + 1
(stripping) (2.90)

7R.M.deVries, G.R.Satchler and J.G.Cramer, Phys.Rev.Letters 32,1377 (1974).



20 CHAPTER 2. SUMMARY OF FORMULAS

In ptolemy only one value of Jt and Jp is allowed and the sum over Jt and Jp in Eq.
2.89 consists of only one term.***NEEDS WORK***

The multipole transition amplitude G is a sum of products of spectroscopic and geo-
metrical components

G
Lx(JtJp)
Mx

(θ) =
∑

ntℓtnpℓp

ALxJtJp
(ntℓtnpℓp)B

Lx(JtJp)
Mx

(ntℓtnpℓp; θ) (2.91)

summed over all contributing states of orbital motion of the transferred nucleons at each
vertex. ptolemy allows only one projectile and target bound state so the sum in Eq.
2.91 consists of only one term. With the phase convention introduced earlier, G is the
negative of the amplitude used in Schwarzchild, et al.

2.3.8 Geometrical Component (including radial integrals)

The angular dependence of the cross section is contained in the “geometrical” component
of Eq. 2.91:

B
Lx(JtJp)
Mx

(ntℓtnpℓp; θ) =
√

4πiLx+ℓt−ℓp

∑

LiLout

CLout,Lx,Li

Mx,−Mx,0ILiLoutLx
(ntℓtnpℓp)Y

Lout

−Mx
(θ) (2.92)

The radial integrals are expressed in terms of the bound-state form factor H [Eq. 2.73
to 2.80] and the radial scattering functions by

ILiLoutLx
(ntℓtnpℓp) =

ei(σi+σout)

∫ ∫

ridriroutdroutfLi
(ri)H

ntℓtnpℓp

LiLoutLx
(ri, rout)fLout

(rout) (2.93)

Note that BLx

Mx
is independent of the shell-model wave functions of the nuclear states.

2.3.9 Spectroscopic Factors and Spectroscopic Component

Let the states A, a, B, b be represented by shell-model wave functionS. In order to treat
the center-of-mass variable ~R consistently and to separate internal and center-of-mass
variables of the nuclear states, we use harmonic-oscillator shell-model wave functions
with the center-of-mass motion in its ground (0s) state.

Consider then the internal states at the target vertex with Jt the total angular mo-
mentum transfer at that vertex. Let ΨγtJt

Mt
be a complete set of x-nucleon shell-model

states for the transferred nucleons, and let a+(γtJtMt) be the creation operators that
produce these states from the vacuum. The x-nucleon states must be projected onto
states of the transferred nucleons of the form Eq. 2.57, with internal and center-of-mass
variables separated. Define the necessary coefficients

KJt
(ntℓtxJx; γt) =
∫ ∫

d3Rxd
3ρx([ψ

ntℓt(~Rx) × φxJx(ρx)]
Jt

Mt
)∗ψγtJt

Mt
({~rα}) (2.94)
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where {~rα} is a set of nucleon coordinates and

Rx =
1

x

x
∑

α=1

~rα (2.95)

Then the conventional spectroscopic amplitude
√
S is given by

√

S(ntℓt, xJx, JT ;Ht, Ct)

=
∑

γt

KJt
(ntℓtxJx; γt)〈J(Ht)

∣

∣

∣

∣A+(γtJt

∣

∣

∣

∣J(Ct)〉 (2.96)

(The reduced matrix element is defined by the Wigner-Eckart theorem in the form

〈jm
∣

∣T k
q

∣

∣ j′m′〉 = Cj′kj
m′qm〈j

∣

∣

∣

∣T k
∣

∣

∣

∣ j′〉.)
The treatment of the centers of mass leading to Eq. 2.94 and 2.96 is exact if the

shell-model wave functions and the radial functions ψ in 2.56 and its projectile ana-
log are harmonic-oscillator functions. However, the radial functions of the target and
projectile bound states are eigenfunctions of Woods-Saxon potentials. This difficulty is
usually ignored since the level of precision of the entire analysis (in particular its abso-
lute normalization) is seldom high enough to require consideration of such niceties. A
crude correction factor can be introduced by expanding the Woods-Saxon wave functions
in terms of oscillator functions and assuming that one term dominates. It can then be
shown that the replacement

√

S(ntℓt, xJx, Jt;HtCt) → Θ(ntℓt, xJx, Jt;HtCt)

Θ(HtCt) =

(

Ht

Ct

)

2nt + ℓt
2

√

S(HtCt) (2.97)

should be correct for the use of the oscillator shell-model wave functions. The projectile
vertex is handled in the same way.

In ptolemy, the spectroscopic amplitudes Θ are read in directly; they can often be
inferred from suitable light-ion reactions between the nuclear state in question. Note the
S as defined above reduces to the standard spectroscopic factor in the case of single-
nucleon transfer.

The spectroscopic component A [Eq. 2.91] is given in terms of the spectroscopic
amplitudes Θ [Eq. 2.96 and 2.97] by

ALxJtJp
(ntℓtnpℓp) =

√

2Lx + 1
∑

xJx

(−)Jx−Jp+ℓp+ℓt

×W (ℓtJtℓpJp; JxLx)Θ(ntℓt, xJx, Jt : HtCt)Θ(npℓp, xJx, Jp : HpCp) (2.98)

A is independent of the scattering angle and Mx.

2.3.10 Outline of Steps in a DWBA Computation for Transfer
Reactions

The main steps in a DWBA transfer reaction calculation can be schematically summarized
as follows. In practice a number of these steps are carried out in parallel.
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1. Adjust the potentials at the interaction vertices to reproduce the experimental
separation energies and compute the bound-state wave functions. This specifies the
effective transition operator through Eq. 2.85 or 2.86.

2. For given optical-model parameters, solve Eq. 2.27 – 2.29 for the radial scattering
functions. At this stage elastic-scattering amplitudes and cross sections can also be
computed.

3. Use Eq. 2.73 to 2.80 to compute the bound-state form factors H(ri, rout).

4. Fold the bound-state form factors with the radial scattering functions and integrate
Eq. 2.93 to obtain the radial integrals ILiLoutLx

.

5. Using given spectroscopic amplitudes Θ compute the spectroscopic components ALx

of the multiple amplitudes using Eq. 2.98.

6. Calculate the geometrical components BLx

Mx
of the multipole amplitudes using Eq.

2.92.

7. Construct the multipole components of the transition amplitude using Eq. 2.91 and
compute the cross section [Eq. 2.89].

Note that in heavy-ion calculations, more than 90% of the time is spent carrying out
steps (3) and (4) – construction of the bound-state form factors and integration over ri

and rout.

2.4 Constants and Units

ptolemy uses the values:8

h̄c = 197.32858 MeV · fm (2.99)

Mµ = 931.5016 MeV/c2 (2.100)

α−1 = 137.03604 (2.101)

where Mµ is the atomic mass unit and α is the fine-structure constant.

ptolemy reads, stores, and prints quantities in the following units:

8E.R.Cohen and B.N.Taylor, J.Phys.Chem.Ref.Data 2,663 (1973).
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Quantity Unit
angles degrees (input,output)

degrees or radians (internal)
cross sections mb
lengths, radii fm
momenta fm−1

energies MeV
reduced mass MeV/c2

nuclear mass amu
potentials MeV
B(E,Lx) e2bLx

wave functions:
bound state (ψ) fm−3/2

scattering (f,χ) none
elastic amplitudes (F, B) fm
amplitudes (G,B) MeV· fm
radial integrals (I) MeV· fm
transfer form factors (H) MeV· fm−3

inelastic effective interaction (H) MeV
Note that since cross sections are expressed in mb, a factor of 10 is necessary in Eq.

2.12 – 2.14, 2.23 – 2.26, 2.35, and 2.89 to convert from fm2.



Chapter 3

Notation and Syntax

3.1 Notation

Ptolemy ignores the case of input letters; lowercase letters are converted to uppercase
before further processing. Thus some changes must be made to the notation established
in the previous section for the description of inelastic excitation and transfer reactions.
In general lower case letters will simply be converted to upper case. However, in Chapter
2 a distinction was made between lower- and upper-case letters in the identification of
the reaction participants. For ptolemy input this distinction will be maintained by
specifying the target particles as A and B while the projectile particles will be a and b.
Thus the reaction computed by ptolemy may be written as

A(a,b)B

In the incoming state, the target is referred to as A and the projectile is A. In the final
state the residual target is B and the ejectile is b. The exchanged particle is referred to
as X. For a stripping reaction we have

a=b+x

B=A+X

while for a pickup reaction

b=a+x
A=A+X

ptolemy will compute either pickup or stripping reactions; it is not necessary for the
user to interchange particles to force the reaction into one form or the other. Inelastic
excitation is implied if the mass and charge of a and b, and of A and B, are the same.

The projectile or ejectile bound state (whichever is appropriate) is always referred to
as the projectile bound state while the target or residual nucleus bound state is called
the target bound state. The Q value of the reaction is the difference of the outgoing and
incoming kinetic energies in the center of mass system so that in terms of the bound state
energies

Q = E(projectile)−E(target) : stripping
Q = E(target)−E(projectile) : pickup

Note that ptolemy deals with actual bound state energies (i.e., negative numbers).
In the case of inelastic excitation, the Q-value is, of course, just the negative of the

24
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excitation energy.

3.2 Ptolemy Syntax

ptolemy uses a free-form keyword-based input. Options are specified and stages of the
calculation selected by the specification of the appropriate keyword. Numeric values are
entered by the specification of a number entering keyword followed by the desired value.
One or more keywords and associated numbers may be included on a single input line
or a data value may be on the line following its keyword. (The CHANNEL, REACTION,and
HEADER keywords are exceptions and require associated information to be on the same
input line.) Words and numbers may not be split across two lines and they may not
contain embedded blanks. Input lines may be up to **** characters long.

Keywords may be separated from other keywords on the same line by blanks, commas,
or sequences of blanks and commas. The equal sign may be used (but is not required)
between a keyword and its associated data value. The colon may be used following the
CHANNEL, REACTION and HEADER keywords but should not otherwise be used in ptolemy

input. The semicolon is used to begin a stage of the calculation; it indicates that all
input needed for that stage has been provided.

Numerical data may be entered with or without a decimal point and may have the E
form of exponent. Valid numerical inputs are

2,2.3,0.0002,2E-4, 2.325E+7, -5.3, +7E-5

An E appearing in a number indicates the beginning of the power of 10 by which the
number is to be multiplied. Thus

5.3E-7=5.3 × 10−7

1E20=10+20

Angular momenta that have the possibility of being half-integer (J or S values but not
L values) have a special form of input. They may be either simple integers or integers
followed by /2 to indicate half integer values. They should not be coded with a decimal
point. Thus

J=2,S=3/2,JP=4/2

are all valid (the last is the same as JP=2) while
J=2.,S=1.5

are both invalid. Such J and S values may be followed by a parity sign. Thus
J=2, J=2-, and J=2+

are all valid.
Keywords may have more than eight characters in their names but only the first eight

characters are used and required. Keywords never have embedded blanks in their names.
Comments may be placed anywhere in the input. They are preceded by a dollar sign

($) which indicates that the rest of the input line is a comment. If a second dollar sign
appears on the same line, the comment is terminated and the remainder of the line is
processed as normal input.



Chapter 4

Elastic and Bound State
Calculations

The basic ingredients of the DWBA calculations performed by ptolemy are two-body
wavefunctions – optical-model scattering states for inelastic excitation and both bound-
state and optical-model scattering states for transfer. Obviously, optical-model scattering
states are also used in the optical model fitter.

One may use the facilities of ptolemy to compute the properties of two-body bound
or scattering states without doing a larger scale calculation. Such calculations will be
referred to as “stand–alone” two-body calculations. Wherever possible the same keywords
and conventions are used for defining the two-body states that are components of a
larger calculation as are used in stand-alone two-body calculations. Examples are the
definitions of the potentials and the specification of the integration grid used to solve the
Schroedinger equation. For this reason we describe the stand–alone two–body calculations
before progressing to the more complicated calculations — the material introduced in this
chapter will be referred to in many of the succeeding chapters.

4.1 Specifying the Two-Body Channel

Stand-alone two-body calculations are done by defining the two particles and the poten-
tial that acts between them and then entering a semicolon to start the calculation. If
the energy is negative a bound state calculation will be made, if it is positive the two-
body scattering will be computed. If desired one may use the keywords BOUNDSTATE or
SCATTERING to indicate which is to be done and the energy will be checked for validity.
Although it is possible to mix stand-alone and DWBA calculations in one job, it is recom-
mended that separate jobs be used for stand-alone and complete DWBA runs. However
many stand-alone calculations of both bound states and scattering may be done in one
job.

The two particles involved in the stand-alone calculation are referred to as the “pro-
jectile” and “target.” These words have their customary meanings for scattering states;
the only distinction for bound states is that the projectile’s angular momentum is used
to determine the spin-orbit force.

26
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The CHANNEL keyword may be used to specify the nuclei in the two-body state. Some
examples will illustrate its form:

CHANNEL 12C + 208PB

CHANNEL: P + 11B = C12

CHANNEL = 209BI(7/2 -- 0.9) = P + 208PB

The first example gives a scattering state while the other two define bound states. Note
that in the case of bound state channels, the resultant bound state may be either the first
nucleus (in which case it is followed by an equal sign) or the last nucleus. In all cases the
projectile and target must be separated by a plus sign and the projectile always comes

first. If a bound state is being specified, the composite nucleus may be either first or last
and must be separated from the other two nuclei by an equal sign.

The nuclides are defined by an element symbol consisting of the atomic weight and
a one- or two-character element abbreviation. The atomic weight may either precede or
follow the symbol but no blank spaces or other punctuation may intervene. In addition
the following symbols (without atomic weights) may be used:

N - neutron

P - proton

D - deuteron

T - triton

H - 3He

A - 4He

Excited states may be indicated by enclosing the spin and excitation energy in paren-
theses following the element symbol. The left parenthesis for excited state specification
must immediately follow the element symbol. The excitation energy and spin of the ex-
cited state may be given in either order, and the excitation energy must include a decimal
point even if it happens to be an integer. Excitation energies are given in MeV. Any or
all of the two or three nuclei may be given an excited state specification. The CHANNEL

keyword and the complete channel specification must be contained on a single input line.
The CHANNEL keyword will define the projectile, target and bound-state mass, charge,

and intrinsic spin. The intrinsic spins and the ground-state mass excesses of the nu-
cleii are found from the ***FIX***1975 Oak Ridge Atomic Mass Adjustment1 and the
1971 Nuclear Wallet Cards compilation. In addition for bound states the total angular
momentum and the bound-state (cluster separation) energy are also defined.

If the CHANNEL keyword is not used, the particle masses may be entered with the key-
words MP and MT which give the masses in AMU of the projectile and target respectively.

1Brookhaven
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The masses do not need to be integers. Alternatively one can use the keyword M to enter
the reduced mass in MeV/c2. The charges of the two particles may be entered with the
keywords ZP and ZT. The excitation energies may be entered using the keywords E*P

and E*T; if they are not entered, zero will be used. The projectile and target intrinsic
spins may be entered with the keywords SP and ST. The total angular momentum of a
bound state may be entered with the keyword J. It is not necessary to enter J or ST (the
calculation does not depend on them) and SP is necessary only if there is a spin-orbit
force.

The projectile and target will be recognized as identical if they have the same mass,
charge, spin, and excitation energy. In such cases the appropriate spin statistics will
be used for scattering calculations. Non-identical particle scattering may be forced by
specifying a small excitation energy for one of the particles.

The c.m. energy may be entered by using either of the keywords ECM or E. In the case of
bound states one of these should be used to enter the energy as a negative number unless
the CHANNEL keyword is used. The laboratory scattering energy may be entered with the
keyword ELAB. In this case both MP and MT must be defined to allow the conversion to
the c. m. energy.

The number of nodes and orbital angular momenta of bound states must be defined
for bound state calculations. The keyword NODES is used to specify the number of nodes.
The node at the origin is not included in the count so that the lowest bound state for each
value of L has 0 nodes. The keyword L is used to specify the orbital angular momentum
of the bound state. If a spin-orbit force is being used in the bound state, it is necessary
to enter the total angular momentum of the “projectile”. This is done with the keyword
JP. Jp, L and Sp are used to find the value of L · S in the spin-orbit force. If either of St

(the target spin) or J (the total bound state spin) are zero, then Jp need not be specified
since it will be uniquely determined by other known spins.

4.2 Specifying the Potentials

The potentials are defined by the keywords Vi, Ri or Ri0, and Ai where the suffix “i”
indicates the potential that is being defined. Possibilities for “i” are:

null – no suffix refers to the real part of the Woods-Saxon well.

I – The suffix I refers to the imaginary part of the Woods-Saxon well.

SO – The suffix SO designates the real part of the spin-orbit force.

SOI – Imaginary part of the spin-orbit force.

SI – Imaginary surface potential.

C – Coulomb potential (VC and AC are not defined).

The forms of these potentials are as follows:
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1. Real part of the Woods-Saxon:

−V

(1 +X)
, (4.1)

X = exp

[

(r − R)

A

]

. (4.2)

2. Imaginary part of the Woods-Saxon (volume absorption):

−VI

1 +XI
, (4.3)

XI = exp

[

(r − RI)

AI

]

. (4.4)

3. Real part of the spin-orbit:

+(VSO + TAU× V) × 4L • S × 1

r
× d

dr

1

(1 +XSO)
, (4.5)

XSO = exp

[

(r − RSO)

ASO

]

. (4.6)

4. Imaginary part of the spin-orbit:

+(VSOI + TAU× VI) × 4L • S × 1

r
× d

dr

1

(1 +XSOT )
, (4.7)

XSOI = exp

[

(r − RSI)

ASI

]

. (4.8)

5. Imaginary surface potential (surface absorption):

+VSI× 4ASI× d

dr

1

(1 +XSI)
, (4.9)

XSI = exp

[

(r − RSI)

ASI

]

. (4.10)

6. Coulomb potential

(a) point and uniform sphere:

+ZpZte
2

r
: r ≥ RC,

+ZpZte
2 ×

{

3 − ( r
RC

)2
}

(2RC)
: r < RC, (4.11)



30 CHAPTER 4. ELASTIC AND BOUND STATE CALCULATIONS

(b) two uniform spheres:

9ZpZte
2

(16π2RCP3RCT3)
×

∫

RCP

0

d3rp

∫

RCT

0

d3rt ×
1

∣

∣r − rp − rt

∣

∣

, (4.12)

where

L • S =
(Jp(Jp + 1) − L(L+ 1) − Sp(Sp + 1))

2
. (4.13)

The potential well depths are given in MeV. Note that the spin-orbit well depths may
either be specified directly by using the VSO and VSOI keywords or their ratio to the
corresponding Woods-Saxon depths may be given by using the TAU and TAUI keywords.
The TAUs are related to the LAMBDAs of DWUCK and LOLA by

TAU = LAMBDA/(4 × 45.2). (4.14)

Note that VSO and VSOI have dimensions of MeV since the factor “4” in the definition
of the spin-orbit force is interpreted as 2 × 2 where one “2” converts L • S to L • σ,
and the other “2” is approximately the square of the pion Compton wavelength in fm.
The ratio TAU is dimensionless. The spin-orbit force always refers to the spin of the
projectile coupled to its orbital angular momentum; the spin of the target does not enter
the potential. A spin-orbit force may not be used if the particles are identical.

In all cases the radius parameter (R0, RI0, RSO0, RSOI0, RSI0, RC0, RC0P, or RC0T)
may be entered in place of the potential radius. The radius is then computed as

R = R0×M
1

3

t : Mp ≤ 2 or ROTARGET specified,

R = R0×
{

M
1

3

p +M
1

3

t

}

: Mp ≥ 3. (4.15)

These formulas are generally appropriate for optical potentials, but may result in un-
expectedly large potential radii for bound states of a nucleon cluster (such as an alpha
particle) and a heavier core. As noted, the keyword ROTARGET may be used to cause all

subsequent radius parameters to be computed using only M
1

3

t .
Defining RC or RC0 causes the “point and uniform sphere” Coulomb potential (6a)

to be used; otherwise the “two uniform spheres” (6b) potential is used. In the latter
case, the radius of each nucleus may be explicitly entered with the RCP and RCT or RC0P
and RC0T keywords, or they may be left undefined. If they are not defined, ptolemy

will choose them to give RMS radii roughly consistent with those determined by electron
scattering. These radii are taken to be:

1 ≤ A ≤ 2 R = 0,
3 ≤ A ≤ 16 Values from Landolt-Boernstein2,
17 ≤ A Values from Bohr and Mottelson formula3.

The Coulomb potential between two uniform spheres is not available for bound states.
The real and imaginary potential parameters may be given a dependence on the

laboratory energy by the use of keywords that end in E or ESQ. In this case the quantities
to be used in the above equations will be computed as follows:
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a = A + AE×Elab + AESQ×E2
lab

RO = RO + ROE×Elab + ROESQ×E2
lab

V = V + VE×Elab + VESQ×E2
lab

ai = AI + AIE×Elab + AIESQ×E2
lab

RiO = RIO + RIOE×Elab + RIOESQ×E2
lab

Vi = VI + VIE×Elab + VIESQ×E2
lab

The names appearing on the right of the equal signs in the above equations are the
keyword values the user enters. The quantities on the left are then used to evaluate the
potentials. The default value for all the keywords ending in E or ESQ is 0.

The keyword EINVERSE may be used to indicate that 1
Elab

and 1
E2

lab

are to be used in

the above formulas for the energy dependent parameters. The default is EPOWERS which
results in the above formulas.

If Ai and/or both Ri and Ri0 are not defined for the imaginary part of a potential,
ptolemy will use the Ai or Ri for the real part of the same potential (RSO will be used
for RSOI, A for AI, etc.). If ASO or both RSO and RSO0 are not defined, A or R will be used
for them. If ASI or both RSI and RSI0 are not defined, AI or RI will be used for them.

In process of computing the bound state wavefunctions it is necessary that V (the
potential depth) and E (the bound state energy) be made consistent with each other.
ptolemy varies one or the other of these two quantities until they are consistent. The
keywords FITV and FITE may be used to determine which quantity is to be varied. FITV
causes V to be changed to produce a well that has the bound state energy E. If a spin-
orbit force has been specified via the keyword TAU, the depth of the spin-orbit force is
also varied since the ratio of the spin-orbit force to the Woods-Saxon well is held constant
at TAU. On the other hand, if VSO is used to specify the spin-orbit force, the strength of
the spin-orbit force is not changed as V is changed. FITE causes E to be computed as the
bound state energy of the given potential. The default is FITV.

4.3 Controlling the Calculation

If a scattering calculation is being made, the S-matrix elements will be found for a range
of orbital angular momentum values. This range may be explicitly specified by the LMIN

and LMAX keywords. If LMIN and/or LMAX are not specified, they will be based on Lc (the
angular momentum for which |S| = 1/2) which is estimated via semi-classical expressions.
In such cases the four keywords LMINMULT, LMINSUB, LMAXMULT, and LMAXADD are used to
compute LMIN and/or LMAX from the formulas:

LMIN = min(LMINMULT×Lc, Lc-LMINSUB)
LMAX = max(LMAXMULT×Lc, Lc-LMAXADD)

Note that if only one of LMIN or LMAX is explicitly specified, then only the other is
computed from the above formulas. One should note that the extrapolation to large
L-values that is provided in DWBA calculations does not occur in elastic scattering
calculations. Thus a larger LMAX or LMAXADD is required for elastic scattering calculations.

It may be desired to compute the elastic S-matrix elements for only one value of L.
In such cases, the keyword L should be used to specify the desired value. If a spin-orbit
force is entered for a scattering problem, the S-matrices will be computed for all values
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of Jp connected with each value of L (note that Sp is not limited to 1/2 for spin-orbit
forces). If it is desired to have only one value of Jp, the keyword JP may be used to
specify that value. If both of the keywords L and JP are used, only one scattering partial
wave will be computed. Bound states are always computed for only one value of L and
JP .

The keyword ELASTIC may be used to cause the elastic differential cross sections to
be computed. The default is NOELASTIC which suppresses the differential cross sections.
The cross sections are given in millibarns/steradian and as ratios to the corresponding
Rutherford (Mott if the particles are identical) cross sections. The cross sections are
averaged over the initial spins and summed over the final spins.

The grid of c.m. angles on which the differential cross sections are displayed is con-
trolled by the keywords ANGLEMIN, ANGLEMAX, and ANGLESTEP. The angles are given in
degrees. The default values are

ANGLEMIN = 0,
ANGLEMAX = 90,
ANGLESTEP = 1.

The keyword LABANGLES may be used to indicate that ANGLEMIN, ANGLEMAX, and
ANGLESTEP specify a grid of laboratory angles. In such cases there is a two to one mapping
of laboratory angles to c. m. angles if the projectile mass is greater than the target mass.
ptolemy will convert positive laboratory angles to the smaller c. m. angle and negative
angles to the larger c. m. angle. In such cases ANGLEMAX may be negative to cause the
c.m. angles to steadily increase through 900. The default is CMANGLES.

The computation of the two-body wavefunctions (both bound and scattering states)
may be controlled with the ASYMPTOPIA and STEPSIZE or STEPSPER keywords. ASYMPTOPIA
specifies (in fm) the radius at which the wavefunctions are to be assumed to be asymp-
totic. It is also the largest value of r for which the wavefunctions will be computed and
stored.

The keyword STEPSIZE gives the increment used in the solution of the bound- and
scattering-state Schroedinger equations. Since arrays must be constructed that have
ASYMPTOPIA/STEPSIZE elements, one should avoid making this ratio very large. The
keyword STEPSPER may be used to specify the number of steps to use per wavelength. If
it is entered, STEPSIZE will be computed according to the formulas:

STEPSIZE = min
(

1
κ
, a

)

/STEPSPER : Bound states
STEPSIZE = min(λ, 2 × a)/STEPSPER : Scattering

where κ is the bound state inverse range:

κ =
√

2M |ζ | (4.16)

and λ is the scattering wavelength:

λ =
2π√
2ME

. (4.17)

In both cases a is the diffuseness of the real part of the central Woods-Saxon well. It
is suggested that STEPSPER be used instead of STEPSIZE since then the step size will
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Keyword Default EL1 EL2 EL3
LMINSUB 20 15 20 25
LMINMULT 0.6 0.7 0.6 0.5
LMAXADD 30 15 20 25
LMAXMULT 1.6 1.6 1.8 2.0
ASYMPTOPIA 20 15 20 25
STEPSPER none 12 15 20
FITACCURACY 10−3 2×10−3 2×10−4 2×10−5

Table 4.1: PARAMETERSET names and associated values for elastic scattering calculations.
The first column gives the default values.

automatically be adjusted as the wavelength changes due to changes in the scattering
energy. If both STEPSIZE and STEPSPER are defined, STEPSPER has precedence.

The keyword PARAMETERSET may be used to select a standard set of values for the
calculation-controlling keywords. The keyword is followed by the name of the desired set;
Table 4.3 gives the names of the sets for elastic scattering and the associated values.

Individual settings may then be overridden by subsequently entering the appropriate
keywords. Note that STEPSPER and not STEPSIZE is defined by these PARAMETERSET sets.
Since STEPSPER has precedence over STEPSIZE, one must use the command

UNDEFINE STEPSPER, STEPSIZE=ssss
if one wants to enter a specific STEPSIZE after having used PARAMETERSET (UNDEFINE is
defined in Chapter 8). The FITACCURACY keyword in Table 4.3 will be explained in the
chapter on optical model fits.

4.4 The Two-Body Wavefunctions

The computed wave functions (for both bound and scattering states) will be printed if
the keyword WRITESTEP is used. This keyword specifies the stepsize for which the wave-
function is to be tabulated. The value of WRITESTEP should be a multiple of STEPSIZE;
if it is not, the closest multiple of STEPSIZE will be used. Setting WRITESTEP equal to 0
(the default) will suppress the printing of the wavefunction.

The bound state wavefunctions are the solutions of the Schrödinger equation
{

h̄2

(2Mr2)

[

−
(

d

dr

)

r2

(

d

dr

)

+ L(L+ 1)

]

+ V (r) − E

}

Φ(r) = 0, (4.18)

while the scattering wavefunctions are the solutions of
{

h̄2

(2M)

[

− d2

dr2
+
L(L+ 1)

r2

]

+ V (r) − E

}

fL(r) = 0. (4.19)

The bound state wavefunctions are normalized to unity so that
∫

∞

0

drr2Φ2 = 1 (4.20)
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The scattering wavefunctions are normalized to have the asymptotic form

f(r) −→ (1/2) {(1 + S)F (kr) + i(1 − S)G(kr)} ,
= cos(δ) exp(iδ) {F (kr) + tan(δ)G(kr)} , (4.21)

where F and G are the regular and irregular Coulomb functions, and δ is the complex
phase shift S = exp(2iδ). If the optical potential is real, then the phase shift δ is real
and the phase of the wavefunction is exp(iδ) for all r. In this case one might want to use
the REALWAVE keyword to cause the wavefunctions to be multiplied by exp(−iδ) so that

f(r) −→ cos(δ)F (kr) + sin(δ)G(kr) REALWAVE. (4.22)

The default is COMPLEXWAVE. Note that asymptotically the bound state wave functions
behave as exp(−r)

r
while the scattering wavefunctions do not have a 1/r in their asymptotic

form.
The name of the bound state wavefunction will be PHIn where “n” is an integer that

is 1 for the first bound state and is increased by 1 for each subsequent bound state. After
n = 9, it is set back to 1 again. Thus one can have up to nine bound state wavefunctions
in the allocator at once. The names of the real and imaginary scattering wave functions
will be WAVER and WAVEI. If it is desired to have more than one scattering wavefunction
in the allocator at once, the keywords RENAME or COPY should be used (see Chapter 8).

The keyword CHECKASYMPT may be used to cause the rate of convergence of the scat-
tering wavefunctions to the asymptotic form given above to be displayed when the wave-
function is computed. The difference of the exact wavefunction and the asymptotic form
will be printed at intervals determined by WRITESTEP (which must also be defined). The
keyword NOCHECKASYMPT cancels a previously entered CHECKASYMPT and is the default.

4.5 Reading the Output

ptolemy produces a summary of the two-body channel that for the most part is self-
explanatory. The summary contains properties of the nuclei (spin, mass, etc.) and the
two-body scattering or bound-state energy. Following this is the potential summary in
which there is a line for each non-zero potential. The well depths are given in a column
labeled “Coupling Cons.”; the entry in this column for the Coulomb potential is the
Sommerfeld parameter. If the calculation is of a bound state, the summary is produced
after the calculation is complete and thus contains the real well depth (or binding energy
if FITE was specified) that is the result of the search for an eigenvalue of the Schroedinger
equation.

During the computation of elastic wavefunctions, the S-matrix elements, their mag-
nitudes and phases (in degrees), and the transmission coefficients are tabulated. If the
keyword ELASTIC is specified, the tabulation of S-matrix elements is followed by a tab-
ulation of elastic cross sections. In this tabulation scattering angles (in degrees) and
differential cross sections are given in both the c. m. and laboratory frames. In addi-
tion the c. m. Rutherford cross section and the ratio of the elastic cross section to the
Rutherford value are given. If the scattering is of identical particles, then all of the cross
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sections are suitably symmetrized (the resulting symmetrized Rutherford cross sections
are sometimes referred to as Mott cross sections).

The last two columns of this tabulation are labeled “% PER LOW L” and “% PER HIGH

L” and contain indications of the errors in the differential cross sections due to the low
and high orbital angular momentum limits. They are defined as

% PER LOW L = 100 {σ(LMIN) − σ(LMIN + 2)} /2
% PER HIGH L = 100 {σ(LMAX) − σ(LMAX− 2)} /2

and thus are the percent error for omitting the smallest and largest L-value used in the
calculation. Experience has shown that the actual error in the cross sections is typically
five times the number printed, but such an estimate is strongly dependent on the rate at
which |S| is approaching 0 or 1. (Of course, if LMIN= 0 the low L error may be ignored.)

Following the differential cross section tabulation, the total reaction cross section and
the nuclear total cross section are printed. These quantities are defined in Chapter 2.



Chapter 5

Optical Model Potential Fits

ptolemy provides a powerful and efficient program for fitting optical model potentials
to elastic scattering data. Data for more than one elastic scattering reaction or at more
than one bombarding energy may be used in a fit. The optical potentials may be given an
energy dependence. The normalization of the data and the laboratory angle calibration
may be used as fit parameters.

5.1 Specifying the Fit Parameters and Data

The input for an optical model fit consists of the following items:

1. specification of the potential parameters that are to be varied in the fit,

2. initial values of the search parameters and the fixed values of all other potential
parameters,

3. experimental data,

4. parameters to control the fit and elastic scattering calculations.

Items 1 to 4 may be given in any order. The end of the input for a fit is signaled by
a semicolon (;) which causes the fit to begin. When the fit is complete, the potential
parameters will be set to the best potential parameters that were found. In addition the
predicted optical model scattering cross sections will be printed for each experimental
point that was included in the fit. The user may then enter control lines to compute
the elastic scattering on a uniform angular grid, or he may increase the accuracy of
the calculation (through the use of keywords such as LMINMULT, LMAXADD, STEPSPER or
FITACCURACY) and resume the search by entering a second semicolon.

Both the fixed and initial potential parameters are entered using the potential key-
words of Section 4.2. The LMINSUB, LMIN, LMAX, LMINMULT, LMAXADD, LMAXMULT, STEPSIZE,
STEPSPER and ASYMPTOPIA keywords (Section 4.3) may be used to control the accuracy
of the elastic scattering calculations during the search. Alternatively one of the elastic
PARAMETERSET keywords (Table 4.3) may be used.

36
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The parameters to be varied in the fit are specified by the FIT keyword. This keyword
is followed by a list of potential parameters (Section 4.2) and/or renormalization factors
and laboratory angle shifts to be varied. The list must be enclosed in parentheses. If two
or more potential parameters are to be held equal to each other during the fit, they should
be joined by an equal sign in the FIT list. Some examples of valid FIT specifications are:

FIT (V VI) - a two parameter fit;

FIT (R0,A=AI, AE=AIE) - a three-parameter fit with the same energy dependence
in A and AI;

FIT (R0=RI0=RC0) - a one-parameter fit.

Each FIT parameter must have its initial value explicitly entered by means of the potential-
defining keywords of Sec. 4.2. The initial value of the first of a string of equal parameters
is the one that will be used to start the search.

The normalization of the data and/or the zero point of the laboratory angles may
be treated as fit parameters. If only one group of data is being fitted, the keywords
RENORMALIZATION and ANGLESHIFT may be included in the list of FIT parameters to
cause these quantities to be included in the search. (See the description of the DATA

keyword below for a precise definition of the meaning of ANGLESHIFT.) If there is more
than one group of data to be fitted, the keywords RENORMn and/or SHIFTn, where ”n” is
an integer from 1 to 20, may be used to indicate which group of data is to be adjusted
in magnitude and/or angle. If several groups of data are to be adjusted, then there will
be several RENORMn’s or SHIFTn’s in the FIT list; these may be connected with equal
signs if the same adjustment is to be made to all of them. The initial values of the
renormalizations and shifts that are part of the search are specified in the DATA keyword
(see below). Some examples of fits that include searches on the renormalization or angles
are:

FIT (V VI A RENORM) - assumes only one data group.

FIT (R0 RI0 SHIFT1=SHIFT2 RENORM1 RENORM2) - two data groups, both have the
same unknown error in angles but possibly different errors in their normalizations.

The default minimizing program (see section 3) cannot be used if the laboratory angle
shift is one of the fit parameters. In such cases the POWELL65 or ROCORD minimizer must
be specified.

The experimental data are entered using the DATA keyword. This keyword is followed
by a pair of parentheses that enclose all of the data that are to be used. As many lines as
are necessary may be used to enter the data; the end of the DATA keyword is signaled by
the closing parenthesis. If a second DATA keyword occurs in a given job, it will replace,
not supplement, the data entered with the first keyword. The data are entered in one
or more groups, each containing data for a single elastic channel at a single laboratory
energy. Each group is preceded by a list of keywords that give the elastic channel, the
laboratory energy, optional overall weight and renormalization factors, and the type of
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data to be entered. The data then follow these keywords. The start of the next group is
indicated by the occurrence of a keyword.

The elastic channel is specified by the CHANNEL keyword which is followed by an
elastic channel specification (see section 4.1). The laboratory energy of the group of
data is specified using the ELAB keyword and is in MeV. If there is only one group
of data, the channel and/or laboratory energy may be specified outside (either before
or after) the DATA keyword. Each data item is weighted in the chi-squared sum by
the square of the inverse of its experimental error. An overall weight factor that will
multiply each of these individual weights may be entered using the WEIGHT keyword.
The keyword RENORMALIZATION may be used to enter a renormalization factor that is
multiplied into each experimental value before computing the chi-squared sum. If WEIGHT
or RENORMALIZATION are not entered, the default value of unity is used.

The laboratory angles of the data can be shifted by a constant angle with the ANGLESHIFT
keyword. This keyword specifies an increment (in degrees) that is to be added to each
angle in the laboratory frame. [In the Almagest (ca. 130 AD) ptolemy “updated” the
positions of some 1000 stars by shifting the positions of every star by the same amount1.]
Input c. m. angles and data are transformed to the laboratory frame for this shift. After
the shift, the Jacobian relating the c. m. and laboratory frames is recomputed at the new
angle, and the angles and data are transformed back to the c. m. frame. Furthermore
if the cross sections are given as ratios to the Rutherford cross sections, the data values
are changed to correspond to the Rutherford cross sections at the new angles. Thus this
keyword treats the data as if the absolute normalization of the data is experimentally
known. If the data was normalized to the Rutherford cross section for small angles, it will
be necessary to use the RENORMALIZATION keyword to specify a suitable renormalization
factor [the average (over the small angles) of the ratios of the Rutherford cross sections
at the original and shifted angles] for the shifted data.

A set of three or four keywords is used to specify the type and order of data being
entered. The set must consist of one keyword from each of the following three groups:

1. ANGLE, CMANGLE, LABANGLE;

2. SIGMA, CMSIGMA, SIGMATORUTH;

3. ERROR, PERCENTERROR, MBERROR.

In addition a fourth keyword, POLARIZATION, may be used to enter polarization data,
but such data will be ignored in the fit. The subsequent data is entered in triples or
quadruples of numbers whose order is the same as that of the three or four keywords.
These keywords remain in effect until a new set is specified; if any one of them is entered,
then a complete new set must be given.

One of the ANGLE, CMANGLE, or LABANGLE keywords is used to indicate the scattering
angles of the data. The ANGLE or CMANGLE keywords are used to designate center-of-mass
angles in degrees. The LABANGLE keyword means that laboratory angles in degrees will
be given. In this case there are two c. m. angles associated with each laboratory angle if

1R. R. Newton, The Crime of Claudius ptolemy, (John Hopkins University Press, 1977).
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the projectile mass exceeds the target mass. For such cases, positive angles are converted
to the smaller possible c. m. angle, while negative angles are converted to the larger.
It is not possible to have the cross sections for both c. m. angles added together for
comparison with the data.

The type of data that is being entered is indicated by the SIGMA, CMSIGMA, LABSIGMA,
or SIGMATORUTH keywords. The first three keywords indicate that cross sections in mil-
libarns are being entered. If SIGMA is used, the cross sections are in the rest frame (c. m.
or laboratory) indicated by the ANGLE, CMANGLE, or LABANGLE keywords. The keywords
CMSIGMA or LABSIGMA may be used to explicitly indicate the choice of frame or to specify
c. m. cross sections at laboratory angles (or vice versa). Ratios of cross sections to
the Rutherford (Mott for identical particle scattering) cross sections are indicated by the
keyword SIGMATORUTH.

The keywords ERROR, MBERROR or PERCENTERROR are used to indicate the nature of
the experimental errors. The ERROR keyword means that errors are being entered in the
same units as the data. Thus the errors will be expressed either in millibarns (in the c.
m. or laboratory frames as determined by the data) or as a ratio to the Rutherford cross
section. The keyword MBERROR indicates that no matter what the data type, the errors
are in millibarns. If the data are ratios to Rutherford, then such errors are expressed in
the c. m. frame; otherwise the frame is the same as that used for the data. The keyword
PERCENTERROR indicates that the errors are expressed in percent.

The following example illustrates the DATA keyword:

DATA (CHANNEL 16O+40CA ELAB=48

ANGLE PERCENTERROR SIGMATORUTH

10 5 1.023, 12.5 2 .99 20 3.3 .5

30 15 .12

ELAB=56 WEIGHT=0.5 ANGLE SIGMA MBERROR

10 3. .3, 15 1. .1 20 .1 .1 )

Here we are entering data at two different energies. Both sets of data are for 16O+48Ca
elastic scattering. The data at the first energy is given at angles of 10, 12.5, 20, and 30
degrees and consists of ratios to the Rutherford cross section that are respectively 1.023,
.99, .5, and .12. The errors in these numbers are given as percentages. The data for the
second energy are given in millibarns with errors also specified in millibarns. If data that
consists of the same quantities in the same order is to be entered at several energies, it is
not necessary to repeat the angle, cross section and error keywords for each data group.

5.2 Controlling the Fit

One of the keywords LMCHOL, QUAVER, MINIM, DAVIDON, POWELL65, or ROCORD may be
used to pick the minimizing program that is to make the search. The average user will
have need of only the default which is LMCHOL. The keywords FITMODE, FITMULTIPLE,
FITRATION, NUMRANDOM, and REINITIALIZE are used by some of the following fitters; the
default values will almost always suffice. The keywords FITACCURACY and MAXFUNCTIONS

are used by all the fitters. A description of these minimizers follows:
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1. LMCHOL - This is a minimizer that uses analytically computed gradients and makes
specific use of the sum-of-squares property of the function that is being minimized.
The analytic gradients are computed as the expectation value in the distorted waves
of the derivatives of the potential. The potential derivatives are evaluated numer-
ically. LMCHOL is based on the Harwell subroutine VA07A which was coded by
Fletcher. Despite the fact that the computation of the gradients can more than
double the chi-squared sum evaluation time, the LMCHOL and QUAVER fitters usually
find a minimum in less than half the CPU time required by the other fitters. We
know of no cases in which the CPU time is significantly longer for LMCHOL. The
LMCHOL fitter is therefore highly recommended and is the default fitter.

2. QUAVER - This is a quasi-Newton fitter that uses a pseudo-inverse procedure to
solve the required systems of linear equations. The search path followed by QUAVER

differs significantly from that followed by LMCHOL only when there are directions in
parameter space for which the second derivative of chi-squared is nearly zero. The
keyword FITRATION may be used to eliminate steps along such poorly determined
linear combinations of the optical model parameters. The default value of 10−4

will have this effect; smaller values (such as 10−15) will eliminate such restrictions
on the search direction, and result in searches that are almost identical to those of
LMCHOL. Setting PRINT=2 (section 8) will cause the singular values (the quantities
that indicate which linear combinations of parameters are poorly determined) to
be printed at each iteration. For both the QUAVER and MINIM fitters, the keyword
FITMULTIPLE is a divisor used to reduce the step length when a step to a larger
function value is attempted. The default value is 5.

3. MINIM - This is a variable-metric fitter using the 1972 Fletcher prescription for the
metric update. It is generally slower than the above two fitters.

4. DAVIDON - This uses the original variable-metric prescription of Davidon. It is
based on the Davidon fitter found in the Argonne Applied Mathematics Division
library. This fitter is somewhat slower than the Fletcher fitter (MINIM). The key-
word FITMULTIPLE determines the initial estimate of the metric matrix. The default
(FITMULTIPLE = 0 or FITMULTIPLE > 100) is to use the second derivative approx-
imation generated from the Jacobian of the chi-squared function. If FITMULTIPLE
is set to a nonzero value, a diagonal matrix will be used as the initial metric and
thus the search will start along the gradient direction. The diagonal elements of
the matrix will be |FITMULTIPLE| ×D(i) where D(i) = 1 if FITMULTIPLE > 0, and
D(i) = x(i)2 if FITMULTIPLE < 0 (x designates the parameter vector). The keyword
NUMRANDOM may be used to specify the number of random steps that are to be made
in confirming a minimum. The default is zero.

5. POWELL65 - This is a minimizer that makes specific use of the sum-of-squares prop-
erty of the function but does not require ptolemy to evaluate the gradient of
the function. It is the Harwell subroutine VA02A which is based on a 1965 paper
of Powell. The POWELLl65 search algorithm is usually quite efficient for the first
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few iterations but then often begins to take very small steps for subsequent iter-
ations. Therefore it often pays to terminate the search intermittently and restart
it again. This may be accomplished by using the keyword REINITIALIZE to spec-
ify the number of iterations between restarts. REINITIALIZE = 16 is a reasonable
value for POWELL65; the default is zero which suppresses reinitialization. The key-
word FITMULTIPLE is used to limit the size of a single step; no step will be allowed
to exceed FITMULTIPLE×FITACCURACY in relative size. The default is 500, but some
tests indicate that larger values (10000) may result in faster searches.

6. ROCORD - This minimizer does not make use of the sum-of-squares property of the
function nor of derivatives. It is provided as an alternative should the preceding
minimizers fail to behave reasonably. The keyword FITMODE may be used to specify
the initial value of IRET for ROCORD; the default is -1021, and should be adequate for
most purposes. The keyword NUMRANDOM has the same meaning as for the DAVIDON

fitter.

The FITACCURACY keyword may be used to specify the accuracy with which the po-
tential parameters are to be found. Its significance depends upon which minimizer is used
but for the first five fitters above it gives the relative accuracy to which each potential
parameter or the minimum chi-squared value is to be found. The default value is 10−3.
This keyword is set by the elastic PARAMETERSET’s (section 4.3.). The MAXFUNCTION key-
word limits the number of chi-squared sums that may be evaluated during a search. Its
default value is 50 which is more than enough for the default fitter (LMCHOL).

5.3 Reading the Output

The output for an optical-model fit begins with a summary of the elastic channels that are
being fitted. For each data group, the laboratory energy, the CHANNEL specification, and
the type of statistics are listed. The orbital angular momentum range and the stepsize
used in solving the Schroedinger equation are also printed. This information is followed
by a list of the parameters that are being varied in the fit and their initial values. If data
was entered in the laboratory system, the conversion of that data to the c. m. system is
shown next. In all subsequent output, the data and fitted values will be printed in the
c.m. system only.

One or more pages is then produced for each data group showing the initial values
of the fit. The potential parameters evaluated for the channel and laboratory energy are
given for each data group. These are followed by a tabulation of the experimental and
computed values of the cross sections at each angle involved in the fit. The cross sections
are given as ratios to the Rutherford cross section and the angles are c. m. angles. The
unsquared contributions to the chi-squared sum are given in a column labeled “(FIT-
EXP)/ERROR)” the chi-squared sum is the sum of the squares of the entries in this column.
The factor WEIGHT is not included in this column. The last column in this tabulation
is labeled “AT LMAX” and has been described in Sec. 4.5. Each data group listing is
terminated with several lines summarizing the chi-squared for that group. The first
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line gives the chi-squared per point (both unweighted and weighted) computed using the
RENORMALIZATION entered by the user (the value is also printed in the line). The next line
gives that value of RENORMALIZATION that results in the minimum chi-squared (assuming
that no other parameters are changed) and the resulting unweighted chi-squared per
point. Finally, if there is more than one data group in the fit, the contribution of the
current group to the total weighted chi-squared per point is printed, and the total chi-
squared per point and chi-squared per degree of freedom for all the data groups are listed
at the end of all the data groups.

After this listing of the initial conditions, the course of the fit is summarized by several
lines printed at the end of each iteration. The lines give the total chi-squared per point
and the corresponding parameter values (the parameters are listed in the order they were
specified in the FIT keyword – this order may be found in the top right-side of the header
on each page). If the listing of iterations terminates with the message

FIT COMPLETE. FINAL RESULTS FOLLOW

then the minimizer being used located a minimum of chi-squared and terminated nor-
mally. Any other message indicates an abnormal termination. The most likely cause
of an abnormal termination is the failure of the minimizer to locate a minimum within
the allowed number of function references (steps); such a condition is indicated by the
message

NOT ENOUGH ITERATIONS TO ACHIEVE A GOOD FIT

In such cases the parameter values at the time of termination of the minimizer are used
as the final parameter values; these will not be parameters corresponding to a minimum

of χ2. ptolemy then gives a listing of the final parameter values and of the resulting fit;
the format of this listing is identical to that used for the initial conditions.

A page labeled FINAL VALUES AND UNCERTAINTIES follows the listing of the fit. This
page has a column for each fit parameter; the columns are labeled with the parameter
names. The first line of the table contains the final value of each parameter. Next
are several lines giving the gradient at the minimum; the gradient is ideally zero but
if there are large second derivatives may be significantly non-zero. Then there are two
lines giving the RMS uncertainty and the relative RMS uncertainty in the parameters.
These are based on the diagonal elements of the covariance matrix (error matrix) and
are defined as the changes in the parameter values that would result in the χ2 (not χ2

per point) increasing by unity. Finally the eigenvalues and eigenvectors of the relative
covariance matrix are listed. Each row of this listing contains the square root of an
eigenvalue and the corresponding eigenvector. The square root of the eigenvalue is the
relative change in the linear combination of parameters specified by the eigenvector that
would result in the χ2 increasing by unity. Thus eigenvectors with small eigenvalues
represent well-determined combinations of parameters.



Chapter 6

Collective Model DWBA for
Inelastic Excitation

ptolemy is capable of doing DWBA calculations for inelastic-scattering reactions. The
collective-model form factor is used for the nuclear part of the effective interaction. Only
one nucleus may be excited in the reaction and that nucleus must initially have spin
zero. The multipolarity (referred to as Lx) of the excitation must be greater than zero,
but is otherwise not limited. The effective interaction that causes the excitation is the
radial derivative of the Coulomb and both real and imaginary nuclear parts of an optical
potential. Usually this optical potential will be that of the incoming channel, but a
different potential may be used.

6.1 Specifying the Physical Problem

In a standard ptolemy calculation of an inelastic-scattering reaction, the input will be
in the following order:

1. Masses, charges, etc., of the 4 nuclei.

2. Grid and other calculation-control parameters.

3. Optical potentials for the two scattering states.

4. Optional potential changes for effective interaction.

Variations of this order are possible: item 4 is not required and item 2 may be spread
among the other items.

In more detail a typical ptolemy input deck for inelastic excitation will look like

REACTION: reaction definition, ELAB = ...

PARAMETERSET...., other parameter specifications

INCOMING incoming optical parameters ;
43
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OUTGOING outgoing optical parameters ;

Effective-interaction parameters (optional) ;

RETURN

Here the keywords INCOMING, and OUTGOING indicate which potential parameters are
being entered. The semicolons indicate that the complete potential has been defined and
that ptolemy is to go ahead with that stage of the computation (the semicolons are
actually part of the input). The final semicolon indicates that all of the computational
parameters have been entered and that the DWBA calculation should begin. Of course
each of the potential specifications will in general require more than one input line.

The easiest way to define the participants in the reaction is to use the REACTION

keyword. This keyword is followed by the statement of the reaction in standard nuclear
terminology. Some examples will best illustrate the possibilities:

REACTION: 48CA(C12, 12C)CA48(2+ 3.83)

REACTION = 208PB(16O, 16O(6.13, 3-))208PB

All four nuclei must be included in the REACTION specification, and the complete reaction
specification must be on the same input line as the REACTION keyword. Excited state
information is enclosed in parentheses with no spaces or other punctuation separating
the nuclear symbol and the left parenthesis. Except as has been otherwise indicated,
blank spaces and commas may be freely used to make the reaction specification more
readable. See the description of the CHANNEL keyword (section 4.1) for details concerning
the nuclide symbols and excited-state specifications.

The REACTION keyword results in the definition of the atomic mass, charge, spin, and
excitation energy of the four particles. Individual data values defined by the REACTION

keyword may be overridden by the use of other keywords or the REACTION keyword may
be omitted and all of the particle definitions entered via other keywords. These keywords
are described in the chapter on transfer reactions (Section 7.1).

The scattering energy is entered by either of the keywords ELAB or ECM followed by
the energy in MeV. In both cases the energy refers to the incident kinetic energy; the
outgoing energy is determined from the Q value of the reaction. The excitation energy
is normally used by ptolemy to determine the Q value of the reaction. If desired, a
different Q value may be entered by using the keyword Q followed by the value in MeV.

The optical potentials for incoming and outgoing states are entered using the potential
defining keywords of Sec. 4.2. The keywords INCOMING and OUTGOING indicate which state
is being defined and a semicolon (;) is used to indicate the end of a particular definition.
There are no default values for the radius or diffuseness parameters. The well depths
are all zero by default. The potential parameters used for the incoming state will also be

used for the outgoing state unless they are explicitly overridden. While this is generally
desired for heavy-ion reactions, for which ptolemy was written, it can have unexpected
consequences in light-ion reactions. The laboratory energy corresponding to the outgoing
scattering energy is used for the outgoing scattering parameters so that the same keyword
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values will give slightly different potentials in the incoming and outgoing channels if an
energy dependence is specified. As an example, the input lines

INCOMING V=50 VI=25 R0=1.2 A=.5 RC0=1.2 ;

OUTGOING ;

define the same optical potential for both the incoming and outgoing states. Since the
radius and diffuseness of the imaginary potential are not given, they are chosen to be the
same as those of the real potential.

The effective interaction for the inelastic excitation is:

H(r) = −β
[

R′
d(Vreal)

dr
+R′

I ×
d(Vimag)

dr

]

+βCR
′

C3ZA
ZAe2

(2Lx + 1)f(r)
(6.1)

where

f(r) =
rLx

RC(Lx+2)
r < RC,

=
RC(Lx−1)

r(Lx+1)
r ≥ RC, (6.2)

Here R′ is the nuclear radius of the nucleus that is being excited:

R′ = R0 × A′(1/3)

R′

I = RI0 × A′(1/3)

R′

C = RC0 × A′(1/3) (6.3)

where the R0 are the radius parameters used in the effective interaction. The atomic
weight of the excited nucleus is denoted by A′(A′ = Ma or A

′ = MA). The quantities
β×R′, β×R′

I , and βC ×R′

C are the so-called deformation lengths of the excited nucleus.
The definition of f(r) is that obtained from a multipole expansion of a point charge
interacting with a uniform sphere of charge. Note that the full RC (not R′

C) appears in
f(r).

The dimensionless Coulomb and nuclear deformation parameters may be entered with
the keywords BETAC and BETA respectively. Alternatively the Coulomb deformation
may be specified by the keyword BELX which enters the B(E, Lx), in units of e2barnLx,
for the corresponding electromagnetic excitation process:

BELX = B(E, excitation) =
[2J(final) + 1]

[2J(initial) + 1]
B(E, decay) (6.4)

The value of BETAC is then computed from

βc =
4π

3Z
×
√
BELX×

(

10

R′

C

)Lx
√

[2J(initial) + 1] [2Lx + 1]

[2J(final) + 1]
(6.5)
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where Z is the atomic number of the excited nucleus and R′

C (in fm) is defined above. If
both BETA and BETAC (or BELX) are not specified, then the missing parameter is chosen
such that the deformation lengths are equal:

βR′ = βCR
′

C (6.6)

where R′ is the nuclear radius of the excited nucleus.
The optical potential that appears in the effective interaction is the optical potential

that was used in the incoming state. It may be modified by entering different potential
parameters after the semicolon that defines the outgoing state. If a potential parameter
is not so changed, its value in the incoming state will be used. Thus

INCOMING V=50 VI=20 R0=1.2 A=.65 RC0=1.2 ;

OUTGOING ;

VI = 1E-6 ;

will result in the effective interaction being essentially real. (Note that it is unfortunately
not possible to redefine the well depths to be exactly zero.)

6.2 Controlling the Calculation

The keywords LMIN and LMAX, or MINMULT, LMINSUB, LMAXMULT, and LMAXADD determine
the range of L-values for which both the nuclear and Coulomb excitation amplitudes are
computed. These keywords are explained in section 4.3, and reasonable values may be
found in Table 6.2 below. The LC used in the formulas in section 4.3, is the average of
the critical L-values in the incoming and outgoing channels.

The Coulomb excitation amplitudes generally must be found for much larger values of
L than the LMAX used for the nuclear amplitudes. Using a semi-classical approximation1,
ptolemy estimates an L′

max such that the Coulomb amplitudes are negligible. The
keyword DWCUTOFF may be used to control this choice; the choice is made such that

|Amplitude(L′

max)| = DWCUTOFF × |Amplitude(Lc)| , (6.7)

where both amplitudes are the pure Coulomb amplitudes. Pure Coulomb excitation
amplitudes (evaluated using Coulomb scattering wavefunctions) are used for LMAX < L <
L′

MAX .
For LMIN ≤ L ≤ LMAX, the nuclear and Coulomb amplitudes are evaluated as a one-

dimensional integral over the range SUMMIN < R < SUMMAX. The Coulomb contribution
for SUMMAX ≤ R < ∞ is then evaluated using the asymptotic expansion described later.
The lower limit (SUMMIN) is usually picked as that value of the radial coordinate beyond
which the elastic scattering wavefunction for LMIN exceeds 10−15 in magnitude. The

1K. Alder, A. Bohr, T. Huss, B. Mottelson and A. Winther, Rev. Mod. Phys. 28, 432 (1956), Eq.
2.83
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upper limit (SUMMAX) is chosen to be the value of ASYMPTOPIA specified for the scat-
tering wavefunctions. These two choices may be overridden with the keywords SUMMIN

and SUMMAX, but there should be no need to do so. The number of Gauss points used
in the one-dimensional integral is specified by the keyword SUMPOINTS which gives the
number of points to use per average wavelength in the incoming and outgoing channels.
SUMPOINTS does not need to be an integer. The Gauss points are mapped into the inter-
val (SUMMIN, SUMMAX) using mappings defined in section 7.2 which are controlled by the
keywords MAPSUM, GAMMASUM, and SUMMID. The default value of SUMMID is the midpoint
of the (SUMMIN, SUMMAX) interval. There should never be any need to override the default
mapping procedure.

The computation outlined in the previous paragraph leaves the following Coulomb
excitation integrals to be evaluated:

1. Lmin ≤ L ≤ Lmax , SUMMAX ≤ r <∞ ;

2. Lmax < L ≤ L′

max , 0 ≤ r <∞.

In case 1) it is necessary to do these integrals for both the regular and irregular Coulomb
wavefunctions; linear combinations, based on the elastic incoming and outgoing S-matrix
elements, of the resulting amplitudes are then used. For case 2) we assume that the scat-
tering is determined by the point Coulomb charges alone and only the regular Coulomb
wavefunctions are used.

In both cases the required Coulomb excitation amplitudes are found by recursion
relations on L. These recursion relations are quite fast and are reasonably stable. The
starting values of the recursion relations are found by a combination of numerical integra-
tions and an asymptotic expansion2 for integrals of Coulomb wavefunctions and inverse
powers of r. The numerical integrals are done cycle by cycle until the asymptotic expan-
sion may be used; the number (which must be an integer) of Gauss points used in each
wavelength is entered using the keyword NPCOULOMB. The relative accuracy required of the
asymptotic expansion may be controlled by the keyword INELASACC. In addition a test of
the recursion relations is made by explicitly computing the final recursed values. If the
recursion relation is in error by more than 10×INELASACC, a warning message is printed.
Reasonable values of NPCOULOMB and INELASACC may be found in Table 6.2 below.

The computation of the scattering wavefunctions may be controlled with the ASYMPTOPIA
and STEPSIZE or STEPSPER keywords. These keywords are defined in section 4.3. As has
just been described, the nuclear part of the excitation amplitude is integrated out to
ASYMPTOPIA; by the use of the asymptotic Belling expansion, the Coulomb excitation
amplitude is integrated to infinity.

The keyword PARAMETERSET (Section 4.3) may be used to select standard groups of
grid-setting parameters. Table 6.2 gives the PARAMETERSET names and the associated
values that are suitable for inelastic excitation calculations.

Since the PARAMETERSET groups of Table ?? define values of ASYMPTOPIA and STEPSPER

that are to be used in the two-body states, the PARAMETERSET keyword should precede
the definitions of the two-body states.

2J.A.Belling, J.Phys.B 1, 136 (1968)
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Keyword Default INELOCA1 INELOCA2 INELOCA3

LMINMULT .6 0 0 0
LMAXADD 30 20 30 50
LMAXMULT 1.6 1.6 2 2.6
SUMPOINTS 6 6 8 12
GAMMASUM 5 5 5 5
INELASACC 10−5 10−3 10−4 10−6

DWCUTTOFF 10−3 10−3 10−4 10−5

NPCOULOMB 8 6 8 10
ASYMPTOPIA 20 20 25 30
STEPSPER none 15 20 25

Table 6.1: PARAMETERSET names and associated values for inelastic scattering calculations.
The first column gives the default values.

6.3 Reading the Output

As each of the two scattering states are entered, a summary of the two-body channel and
the potential is printed; this summary was described in Sec. 4.5. The computation of the
inelastic excitation amplitudes is preceded by a page summarizing the reaction. This page
contains a listing of the nuclei involved in the reaction, the deformation parameters, and
the potential parameters used for the effective interaction. The column labeled DEPTH in
the latter contains −3ZaZAe

2 for the Coulomb part of the effective interaction. Next the
range of angular momenta (LMIN, LMAX) for which both the nuclear and Coulomb ampli-
tudes are computed is listed. This is followed with a summary of the one-dimensional
integration grid that is used to compute the non-asymptotic part of these amplitudes.

Next a summary of the determination of the maximum L value (L′

MAX) needed for
the Coulomb amplitudes is given. The maximum value required for each (Lx, Lout − Li)
pair is given; the maximum of all of these values is then used. Following this summary
one or more warning messages of the form

FOR LIN, LOUT = RECURSION IS POOR:....

may be printed. These indicate that the recursed values of the Coulomb amplitudes
did not compare well with the explicitly computed values. Both values are printed in
the message. If the difference of the two values is not large, or if the values are both
unusually small, then the message may be ignored. Otherwise the calculation should be
repeated using a larger value of NPCOULOMB and/or a smaller value of INELASACC.
A page labeled INTERPOLATION AND EXTRAPOLATION IN L contains the line MAXIMUM L0

USED IN COMPUTING.... This line gives the maximum value of L (L′

MAX) for which the
Coulomb amplitudes were computed by the recursion relations.

The pages labeled REACTION AND ELASTIC PARTIAL WAVE AMPLITUDES give the am-
plitudes for LMIN ≤ L ≤ LMAX. ****NEEDS WORK**** The columns labeled RADIAL

INTEGRAL give the magnitude and phase (in radians) of the inelastic excitation ampli-
tude. This is the amplitude defined in Eq. 2.39 except that a factor (BETA+BETAC)/2 has
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been removed. The columns labeled INCOMING ELASTIC and OUTGOING ELASTIC give the
magnitudes and phase-shifts (in radians) of the elastic S-matrix elements. The Coulomb
phase shifts are also given in radians.

The last set of pages give the inelastic excitation cross sections. These are given (in
millibarns) in a column labeled REACTION and are c. m. values. The column labeled LOW

L %/L has the significance described in Sec. 4.5, however the column labeled % FROM L >
LMAX has a quite different meaning from the corresponding column in the elastic scattering
output. Here the column gives (as a percentage) the total contribution of the (pure
Coulomb) amplitudes for LMAX < L ≤ LMAX’. It is not to be construed as an indication of
error. The columns labeled INCOMING/RUTHERFORD and OUTGOING/RUTHERFORD give the
elastic cross sections relative to the Rutherford values.

Following the tabulation of the differential cross sections is a line labeled TOTAL.
This line gives the total inelastic excitation cross section (computed by summing the
partial-wave amplitudes – not by integrating the printed angular distribution) and the
total reaction cross sections for the entrance and exit channels. Following this line is
a breakdown of the total excitation cross section into contributions from each magnetic
substate (the axis of quantization is the incoming beam direction). Although values are
listed only for Mx ≥ 0, the listed values for Mx > 0 are not doubled.
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Finite Range DWBA for Transfer
Reactions

ptolemy can carry out finite range DWBA calculations for particle transfer reactions.
The reaction may be either stripping or pickup, and may involve more than one exchanged
orbital angular momentum (referred to as Lx). Either the post or prior approximation
may be used, and the effective interaction may include terms for the Coulomb part of the
bound-state potential, the core-core Coulomb optical potential, and the real part of the
core-core nuclear optical potential. When all these terms are included, the discrepancy
between post and prior calculations is usually less than a few percent. Core-core terms
for the imaginary part of the optical potential may not be included.

7.1 Specifying the Physical Problem

In a standard ptolemy calculation of transfer reactions, the input will be in the following
order:

1. Masses, charges, etc., of the 5 particles.

2. Integration grid specifications and L-value ranges.

3. Potentials for the two bound states.

4. Optical potentials for the two scattering states.

Variations on this order are possible; the most likely is the spreading of item 2) among
the other items.

In more detail a typical ptolemy input deck will look like

REACTION: reaction definition, ELAB = ...

PARAMETERSET ...., other computation parameters

PROJECTILE projectile bound state parameters ;
50
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TARGET target bound state parameters ;

INCOMING incoming optical parameters ;

OUTGOING outgoing optical parameters ;

. ;

RETURN

Here the keywords PROJECTILE, TARGET, INCOMING, and OUTGOING indicate which poten-
tial parameters are being entered. The semicolons indicate that the complete potential
has been defined and that ptolemy is to go ahead with that stage of the computation
(the semicolons are actually part of the input). The final semicolon indicates that all of
the computational parameters have been entered and that the DWBA calculation should
begin. Of course each of the potential specifications will in general require more than one
input line.

The easiest way to define the participants in the reaction is to use the REACTION

keyword. This keyword is followed by the statement of the reaction in standard nuclear
terminology. Some examples will best illustrate the possibilities:

REACTION: 48CA(16O, 14C)50TI

REACTION = 208PB(O16,15N)BI209(7/2- .90)

REACTION PB208(O16 15N(3/2, 6.3239))BI209

REACTION PB208(16O(2,6.93) 12C)PO212

All four nuclei must be included in the REACTION specification, and the complete reaction
specification must be on the same input line as the REACTION keyword. Excited state
information is enclosed in parentheses with no spaces or other punctuation separating
the nuclear symbol and the left parenthesis. An excited state of the initial target may
not be given in this manner, but any or all of the other three particles may have excited
state descriptors. See the description of the CHANNEL keyword (Section 4.1) for details
concerning the nuclide symbols and excited-state specifications. Except as has been
otherwise indicated, blank spaces and commas may be freely used to make the reaction
specification more readable.

The REACTION keyword results in the definition of the atomic mass and charge of the
four particles. The atomic mass and charge of the exchanged particle is then computed
by subtraction. The ****1975 Oak Ridge Atomic Mass Adjustment**** and the 1971
Nuclear Wallet Cards compilation1 is then used to find the ground state mass excesses
and spins of all 5 particles. The ground state mass excesses (along with the excitation
energies, if given) will be used during the bound state computation to find the separation
energies of the exchanged particle (X) from the appropriate cores.

1F. Serduke, “Atomic Mass Table,” Argonne Internal Report, 1975, and private communication.
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Individual data values defined by the REACTION keyword may be overridden .by the
use of other keywords or the REACTION keyword may be omitted and all of the particle
definitions entered via other keywords. The keywords that define the five particles have
the form ”Ki” where ”K” indicates what quantity is being defined and ”i” is a suffix
indicating which particle is involved (A, A, B, B, or X). The possibilities for K are

M - The mass in AMU. This need not be an integer.

Z - The charge.

J - The spin of the nucleus.

MXCG - The mass excess of the ground state in MeV.

E* - The excitation energy in MeV.

MXC - The mass excess of the nucleus in MeV ( MXCi = MXCGi + E*i).

As an example MB=15, ZB=7, JB=3/2, E*B=6.3239, MXCGB = .10152 would define the
excited state of 15N contained in the third REACTION example given above. (Alternatively
one could have entered MXCB = 6.42542 and left out the E*B and MXCGB keywords or one
could directly enter the proton separation energy at the time of the 16O bound state
calculation and leave out all the mass excess specifications.) In the following example

REACTION: 209BI(16O 12C)213AT, JBIGB = 9/2

one is supplying the ground state spin of 213At which is not in ptolemy’s table.
The scattering energy is entered by either of the keywords ELAB or ECM followed by

the energy in MeV. In both cases the energy refers to the incident kinetic energy; the
outgoing energy is determined from the Q value of the reaction.

The Q value may be entered by using the keyword Q followed by the value in MeV.
If it is not entered it will be found as the difference of the two bound state energies. If
it is entered then it is necessary to define only one of the bound state energies; the other
will be found using the Q value. Since the REACTION keyword results in the definition of
both bound state energies, it is usually not necessary to enter the Q value.

The version of the DWBA on which ptolemy is based uses as the effective interac-
tion that induces transfer the potential that binds the composite particle at either the
projectile or target vertex. The vertex whose potential is to be used as the effective
interaction is specified by the keywords USEPROJECTILE or USETARGET. USEPROJECTILE
indicates that the potential for the projectile bound state is the interaction potential;
USETARGET causes the target potential to be used. The default is USEPROJECTILE. Note
that we avoid the use of the words “post” and “prior” in specifying the interaction vertex.

The content of the interaction potential is controlled with the NUCONLY, USESIMPCOULOMB,
USECOULOMB or USECORE keywords. NUCONLY means that only the nuclear part of the
bound state potential is used in the interaction potential. (Most published DWBA cal-
culations have used this prescription.) USESIMPCOULOMB means that the full bound state
potential at the vertex designated by USEPROJECTILE or USETARGET is used. USECOULOMB
causes the nuclear potential at the designated vertex to be used with the complete three-
body Coulomb potential. The inclusion of the Coulomb corrections due to the third
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particle removes post/prior discrepancies from the Coulomb part of the interaction and
can result in much closer agreement between USETARGET and USEPROJECTILE results. The
keyword USECORE may be used to include both the Coulomb and core-Coulomb correc-
tions that are included by the USECOULOMB keyword and the core corrections from the
real part of the nuclear optical potential. Core corrections due to the imaginary part of
the optical potential (which are typically only a few percent) cannot be included. The
default is USECORE. Note that DWBA calculations are usually somewhat simpler numer-
ically if the interaction is attached to the vertex (usually the projectile vertex) involving
the lighter ions. In a reaction such as 208Pb(16O, 17O)207Pb in which the projectile and
target differ significantly in mass, a USETARGET calculation requires a substantially denser
integration grid than is required for USEPROJECTILE, however if the USECORE option is
selected, essentially the same cross sections will be found in both cases.

The spectroscopic amplitudes for the two bound states may be entered with the
keywords SPAMP and SPAMT. These amplitudes will be squared and multiplied into the
cross sections. The default values are unity. Alternatively the spectroscopic factors
(the squares of the amplitudes) may be directly entered using the keywords SPFACP and
SPFACT. The spectroscopic factors must be positive but the amplitudes may be negative.

Potential parameters must be entered for each of the two bound states and the two
scattering states. The potentials are defined when the bound state or scattering state is
to be computed; the same keywords are reused to define the potentials in each of the four
states. Each of these four two-body states consists of two particles that are referred to
as the “projectile” and “target” (not to be confused with the projectile bound state and
target bound state). In the scattering states these words have their normal meanings;
for the bound states the exchanged particle (X) is always the “projectile”. The potential
parameters are defined in Sec. 4.2. The laboratory energy corresponding to the outgoing
scattering energy is used for the outgoing potential parameters so that the same keyword
values will give slightly different potentials in the incoming and outgoing channels if an
energy dependence is specified.

If a given V or TAU is defined in a channel, then its associated R (or R0) and A must
also be defined. At the beginning of input for each channel, all V’s and TAU’s are set to 0
and all R’s and A’s are undefined. However, potential parameters will be retained (if they
are not overridden) from one bound state to the other and from one scattering state to
the other. They will not be retained from bound states to scattering states or vice-versa.
The same rules apply to RC and RC0, one of which must be defined for the bound states if
both Zp and Zt are nonzero. If both RC and RC0 are undefined for the scattering states,
the Coulomb potential of two uniform spheres (Section 6b) will be used.

Normally the binding energy (cluster separation energy) of the bound states will be
computed by ptolemy from the information in the REACTION specification. If it is desired
to override this bound state energy, one may use the E keyword to enter the bound state
energy along with the bound state potential. The energy is given in MeV and must
be negative for bound states. The E keyword may also be used in the scattering state
descriptions in which case it specifies the c. m. energy of the state. It will then override
the c. m. energy determined from the ELAB keyword or from ELAB combined with the
Q value depending on the channel. One may use the E*P or E*T keywords to enter the
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excitation energy of the projectile or target.Use of FITE (page 38.) in DWBA calculations
may result in bound state energies (and hence Q-values) that are significantly different
from the values determined from the REACTION specification. The default is FITV.

7.2 The Integration Grid

The ptolemy integration grid is constructed by a rather elaborate set of subroutines
consisting of some 1100 fortran source cards. The construction is fairly automatic and
is designed to place the integration points where the integrand is largest. Ideally the user
would not have to intervene in this process and would only have to tell the processor
the desired accuracy of the final results (the differential cross sections). Unfortunately
the method is less than perfect and the user must have some understanding of what is
done. This section describes most of the parameters that control the grid construction.
The novice user of ptolemy need not be concerned with the details of this section
since the PARAMETERSET keyword described in the following section can be used to choose
complete sets of grid-construction parameters. As is described in the following section,
these parameters have been tuned for specific types of calculations; they may not be
adequate for quite different types of calculations, and the convergence of the computed
cross sections should be checked by repeating such calculations with a different set of
parameters.

The ptolemy integration grid is based on the three variables d(DIF), s(SUM), and
φ(PHI):

d = Ri - Rout ,

s = (Ri + Rout)/2 ,

φ = angle between Ri and Rout.

Here Ri and Rout are the radial variables in the incoming and outgoing elastic channels.
The form factor is first integrated over φ. This results in a quantity that, for fixed values
of d, is a smoothly varying function of s. However the scattering wavefunctions are
often rapidly varying functions of s. Therefore the form factor is computed on a rather
coarse grid of s values and interpolated to a fine grid for integration with the scattering
wavefunctions. The numbers of points in each of the grids on which the form factor is
computed are specified by the keywords NPSUM, NPDIF, and NPPHI, respectively. These
numbers may have any value between 1 and 2000; typical values will be found in Table
7.3 below. The number of points in the SUM integration grid is specified by the keyword
SUMPOINTS which gives the number of points per average wavelength in the entrance and
exit channel. In this manner, the grid automatically becomes denser as the bombarding
energy is increased; it is our experience that the other three grids (controlled by NPDIF,
NPSUM and NPPHI) need not become denser as the bombarding energy increases. The
same three-dimensional grid is used for all values of Li, Lout and Lx.

The keyword DWCUTOFF is used in the construction of the integration grids. DWCUTOFF
specifies in a relative sense the smallest integrand

(Ri×scattering wave×bound state×potential×bound state×scattering wave×Rout)
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to include in the grid. If the integrand at a point (Ri, Rout, φ) is smaller than DWCUTOFF

times the largest value of the integrand encountered, that point will not be included in
the grid.

The lower and upper limits of the SUM grid are determined as the values of s for
which the integrand has fallen (in a relative sense) beneath DWCUTOFF at d = φ = 0. The
scattering wavefunctions for L = LMIN are used when finding the lower limit of s while
the wavefunctions for L = Lc are used for the upper limit. These two limits may be
overridden by using the SUMMIN and/or SUMMAX keywords to give values (in fm) of the
lower and upper limits.

The SUM grid points are mapped into the interval (SUMMIN, SUMMAX) in a manner
that clusters them about a “midpoint.” This midpoint is at present chosen to be the
expectation value of SUM (weighted by the integrand for L = Lc) for d = φ = 0. The value
of the “midpoint” may be overridden with the keyword SUMMID or it may be multiplied
by a factor specified by the MIDMULT keyword, however the resulting value will always be
constrained to be not greater than the average of SUMMIN and SUMMAX.

The form of mapping used for the SUM grid may be controlled by the MAPSUM keyword
which may have one of the following values:

• 0 - linear mapping with no compression.

• 1 - cubic mapping with sinh compression.

• 2 - rational mapping with sinh compression (default).

• 3 - linear mapping with sinh compression.

SUMMAP = 2 gives the best results in the cases so far examined and is the default. The
degree of compression in mappings 1-3 is controlled by the GAMMASUM keyword. Suitable
values are indicated in Table 7.3 below.

The DIF grid limits are determined by the values of d for which the form factor becomes
smaller in a relative sense than DWCUTOFF. Initially these limits are chosen separately for
each of the NPSUM values of S. Each DIF grid is also mapped about a ”midpoint” which
is chosen to be the location of the maximum of the form factor for the fixed value of SUM
(and φ = 0). Since the automatic choice of the DIF limits and midpoints seems always to
be successful, no keywords are provided to override these values. The keyword MAPDIF is
used to choose the DIF mapping and has the same meanings as the MAPSUM keyword. The
best value in the cases studied is 1 which is the default. The keyword GAMMADIF specifies
the degree of compression used in the mapping.

To allow interpolation in the SUM variable, the DIF grid points must be smoothly
varying functions of S. The procedure outlined in the previous paragraph does not
necessarily produce such a grid. Therefore low-order polynomials in S are fitted to the
families of DIF points that are chosen above. These polynomials are then used to generate
the DIF points that are actually used in the calculation. The order of these interpolating
polynomials may be specified by the VPOLYORDER keyword; the default is 3 which is almost
always adequate. (The error message

INVALID VMIN, VMID, VMAX...
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usually means that VPOLYORDER should be increased, although the cross section values
are often only slightly affected by this error.)

The φ maps are individually chosen for each value of s and d. The minimum φ is
always 0 and the maximum is determined as the point at which the form factor falls in
a relative sense beneath DWCUTTOFF. For heavy ion reactions this is usually a small angle
[cos(φ) > .99]. The φ map is a linear map in the variable cos(φ).

7.3 Controlling the Calculation

The keywords LMIN and LMAX, or LMINMULT, LMINSUB, LMAXMULT, and LMAXADD determine
the range of L-values for which the transfer amplitudes are computed. These keywords
are explained in section 4.3, and reasonable values may be found in Table 7.3 below. The
Lcritical used in the formulas in section 4.3 is the average of the critical L-values in the
incoming and outgoing channels.

Not all radial integrals used in computing the differential cross sections need be ex-
plicitly computed by ptolemy. ptolemy will interpolate between computed values and
extrapolate beyond the largest value of L for which the radial integrals are computed.
The keyword LSTEP determines which radial integrals are to be computed. The radial
integrals for

LOUT = LMIN, LMIN + LSTEP, LMIN + 2LSTEP...,

(where the sequence stops at or before LMAX) will be computed. The radial integrals
for all Lx and Li associated with these Lout’s will be computed. The remaining radial
integrals for LMIN ≤ Lout ≤ LMAX will then be found by interpolation using continued
fractions. The default value of LSTEP is 1 which causes all radial integrals from LMIN to
LMAX to be computed explicitly.

In addition ptolemy will pick a L′

MAX > LMAX such that radial integrals for Li,
Lout > L′

max are negligible. The radial integrals for LMAX < Li, Lout ≤ L′

max will be
found by extrapolation. The extrapolating function used is of Woods-Saxon form in L.
Thus LMAX must be sufficiently beyond the L-window for such a shape to be an adequate
representation of the radial integrals. The keyword MAXLEXTRAPOLATION may be used to
limit or completely suppress the extrapolation to L > LMAX. It specifies the maximum
allowed L′

max-LMAX. If it is set to 0, no extrapolation will occur. The default value is 100.

Since no extrapolation to Li, Lout < LMIN is made, LMIN must be small enough to
include all important radial integrals. Care should be taken to avoid specifying too
small a value of LMIN since the radial integrals for small Li and Lout are small due to
extensive cancellations of the integrand viewed as a function of Ri + Rout. In practice
these cancellations are hard to reproduce without using a large number of Gauss points
and the computed radial integrals may be much larger than they should be. Thus a more
accurate solution is often obtained by totally excluding integrals whose contributions are
very small but which are hard to calculate accurately.

For a given reaction there will usually be several possible values of the transfered
orbital angular momentum:

Lx = Lout - Li = J(projectile) - J(target) .
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ptolemy will compute the radial integrals for all possible values of Lx and add the
resulting cross sections together with the appropriate Racah coefficients. If only one
value of Lx is possible the resulting cross section will still be weighted by the Racah
coefficient. If it is desired to have results for only one value of Lx, the keyword LX may
be used to specify the desired value.

The computation of the two-body wave functions (both bound and scattering states)
may be controlled with the ASYMPTOPIA and STEPSIZE or STEPSPER keywords. These
keywords are defined in section 4.3. ASYMPTOPIA and STEPSIZE or STEPSPER may be
respecified for each of the four two-particle states; if they are not reentered, the value
last entered is used.

The value of ASYMPTOPIA in effect when the bound states are specified is the largest
value of Rp or Rt (the radial coordinates of the projectile and target bound-state wave-
functions) at which the bound- wave functions will be found and thus must be large
enough to satisfy the needs of the integration grid. The largest values of Rp and Rt used
by the integration grid are printed in the summary of the grid.

The largest value of Ri and Rout (the scattering variables) will automatically be chosen
to be large enough to satisfy the needs of the integration grid. However it will never
be smaller than the value of ASYMPTOPIA in effect at the time of input of the optical
potentials. Therefore since, as has just been explained, a large ASYMPTOPIA is often
needed for the bound-state wave functions, substantial memory savings may be realized
by reducing ASYMPTOPIA to as small a value as is physically reasonable for the scattering
states; it will then be automatically increased to the required value.

The keyword PARAMETERSET (Section 4.3) may be used to select standard groups
of grid setting parameters. Table 7.3 gives the PARAMETERSET names and the associated
values that are suitable for transfer calculations. Since the PARAMETERSET groups of Table
7.3 define values of ASYMPTOPIA and STEPSPER that are to be used in the two-body states,
the PARAMETERSET keyword should precede the definitions of the two-body states. The
CA60A and CA60B PARAMETERSET names are appropriate for two-nucleon transfer reactions
initiated by 16O on Ca near 60 MeV. The PB100A, PB100B, and PB100C parameterset

names are designed for single-nucleon 16O on Pb reactions near the Coulomb barrier; at
bombarding energies of several hundred MeV, larger values of LSTEP may be used. The
ALPHA1, ALPHA2 and ALPHA3 sets were designed for (16O, 12C) reactions on targets around
24Mg.

Table 7.3 shows that as one increases the numbers of grid points, one should also
reduce DWCUTOFF so as to include more of the integrand in the computation. This reduc-
tion in turn means that ASYMPTOPIA may have to be made larger. The larger intervals
that result from the smaller DWCUTOFF will also result in the Gauss points being spread
out further so that the same number of points will give reduced accuracy. The ALPHAi
sets have significantly larger NPSUM and NPDIF values than the other sets. These are
due to the facts that the alpha-core bound state wavefunctions have a large number of
nodes, and that the DIF grids for alpha transfer extend further than for than for one- and
two-nucleon transfer.

It is strongly suggested that for each substantially new problem, the user make cal-
culations with several different sets of grid parameters to verify that convergence has
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been achieved. Many nodes in the bound-state wavefunctions, a strong dependence on L
(such as is obtained with surface transparent potentials) of the elastic scattering wave-
functions, poorly matched reactions, and transfers of heavy clusters are all examples of
cases in which modifications of the parameter sets may be necessary.

7.4 Saving Time and Core with SAVEHS and USEHS

This section is retained for historical reasons. Modern computers have so much memory
and also are so fast that the savings described here are irrelevant.

Almost all of the time in a large DWBA calculation is devoted to the form factor
integral:

H(Ri, Rout) =

∫

dφ (φP Veff φT ) (7.1)

These quantities are independent of both the optical potentials and the scattering energy.
Most DWBA studies are principally concerned with the effects of variations in the optical
potentials. Thus it is reasonable to save the computed H ’s in a dataset for reuse with
different optical potentials. If a study is being made at a number of relatively close
energies, time can also be saved by making one large calculation containing all of the
orbital angular momenta needed for all of the energies, and then in subsequent jobs using
subsets of the resulting dataset. ptolemy provides two keywords, SAVEHS and USEHS,
to allow the form-factor integrals to be saved.

The SAVEHS keyword is used to initiate the saving of the integrals over φ of the form
factor. These integrals may then be reused in later calculations with different optical
potentials at a considerable saving in CPU time. The SAVEHS keyword must be entered
before the first semi-colon and should be entered after the HEADER and REACTION keywords
if they are used. The output will be written to Fortran unit 1.

The USEHS keyword is used to indicate that the H-integrals saved in a previous calcu-
lation with the SAVEHS keyword are to be reused. USEHS must be entered before the first
semicolon. If it is used, the REACTION, LSTEP and all grid-setting keywords should not be
specified again. The bound state potentials must not be entered; rather the definitions of
the new optical potentials should directly follow the USEHS keyword. These definitions are
then followed by the final semicolon indicating that the DWBA calculation is to begin.
Thus a typical USEHS run has the form

USEHS

INCOMING potential definition;
OUTGOING potential definition;
;
RETURN

If ELAB, LMIN, and/or LMAX are not specified, the SAVEHS values will be used. However
new values of these parameters may be specified in the USEHS run. If different values are to
be specified; they must be given after the USEHS keyword. If a different LMIN is specified,
the user must insure that it was one of the values explicitly computed in the SAVEHS run
[i.e. that LMIN = LMIN(SAVEHS) + n×LSTEP]. If a new value of ELAB is specified, the SUM
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Keyword Default CA60A CA60B PB100A PB100B PB100C

LSTEP 1 3 2 5 4 3
DWCUTOFF 10−3 10−2 10−3 10−3 3 × 10−3 10−4

SUMPOINTS 6. 6. 6. 2.5 3. 3.5
NPSUM 15 10 15 10 15 20
NPDIF 10 10 13 8 10 14
NPPHI 10 10 12 10 12 16
LMINSUB 20 10 15 12 16 20
LMINMULT .6 .6 .5 .86 .78 .70
LMAXADD 30 15 20 30 35 40
LMAXMULT 1.6 1.5 1.7 1.6 1.8 2.0
GAMMASUM 5. 5. 5. 10−3 10−3 10−3

GAMMADIF 5. 5. 5. 3. 3. 3.
ASYMPTOPIA 20 20 25 45 50 55
STEPSPER none 12 20 8 12 16

Keyword ALPHA1 ALPHA2 ALPHA3

LSTEP 2 1 1
DWCUTOFF 10−3 10−4 10−5

SUMPOINTS 6. 7. 8.
NPSUM 40 50 70
NPDIF 25 30 35
NPPHI 12 14 16
LMINSUB 10 15 20
LMINMULT .6 .5 .4
LMAXADD 15 20 25
LMAXMULT 1.5 1.7 2.0
GAMMASUM 3. 3. 3.
GAMMADIF 5. 5. 5.
ASYMPTOPIA 20 25 30
STEPSPER 12 20 25

Table 7.1: PARAMETERSET names and associated values for DWBA transfer calculations.
The first column gives the default values.
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grid will not be the optimal grid since it was chosen for a different energy. In cases in
which it is desired to do USEHS runs at different energies, the SAVEHS run should be made
at the maximum energy to be used. It should be made with more SUM points than would
be necessary for a calculation at a single energy. Also the automatic choice of LMIN will
have to be reduced.

Since the large arrays used for the angular transforms in the form-factor integral do
not need to be constructed for USEHS calculations, there are also substantial memory
savings in USEHS jobs. It is suggested that during a study of a given set of reactions,
a SAVEHS run be made for each different reaction, and the results stored on the on-line
disks. The effects of different optical potentials may then be quickly and cheaply studied
for all the reactions using USEHS jobs. When the study is complete, the SAVEHS datasets
may be copied to a tape for long-term storage.

7.5 Reading the Output

As each of the bound states and elastic scattering states are entered, a summary of the
two-body channel is printed; the format of this summary has been described in Sec. 4.5.
When the fifth semicolon is entered, a summary of the reaction is printed. This summary
lists the nuclei involved, the bound-state properties, and the spectroscopic factors. The
Q-value of the reaction is also printed. If the Q-value or the bound-state or outgoing
scattering energies were explicitly entered by the user, then the differences of the bound-
state energies and of the scattering energies may not be the same, or they may not be
equal to the Q-value. Under these circumstances an appropriate warning message is
printed, however the calculation proceeds with the bound-state and scattering energies
that were listed in the previous summaries. After the bound-state properties, the content
of the effective interaction, as determined by one of the keywords NUCONLY, USESIMPCOUL,
USECOULOMB, or USECORE, is listed.

The range of L’s and the increment of L for which the radial integrals will be explicitly
computed is then listed. The range of transfered orbital angular momenta is also given.

A several-line summary of the three-dimensional integration grid is then given. The
lines give the number of Gauss points used for, and the extent of, each dimension of the
grid. The entry under NUM. PTS for (RI+RO)/2 gives the number of Gauss points used in
the integrals involving the wavefunctions, and is determined by the value of SUMPOINTS;
the form factors are found at these points by interpolation. The number of points in the
(RI + RO)/2 grid at which the form factors are evaluated (NPSUM) is given in parentheses
at the end of the (RI + RO)/2 line. The warning message

INVALID VMIN, VMID, VMAX...

may precede the integration grid summary; it is explained in Sec. 7.2. Two lines of the
form

MAXIMUM R’S USED FOR...

give the maximum radial coordinate values for which each of the bound-state and scattering-
state wavefunctions will be used in the three-dimensional integrals. The corresponding
values of ASYMPTOPIA may be reduced to approximately 5 fm greater than these values
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in future calculations. If the bound state ASYMPTOPIA prove to be limiting factors in the
grid construction, the warning message

ERROR ... BOUND STATE WAVEFUNCTIONS NEEDED...

IN FUTURE RUNS INCREASE ASPYMPTOPIA TO...

will be printed. The calculation should be repeated with an increased value of ASYMPTOPIA
for the bound states since the radial integrals computed with the smaller grid may not
be accurate. The increased value should be at least 5 fm larger than the values printed
in the warning message.

If (as is suggested) PRINT=2 has been specified, one or more pages labeled COMPUTATION

OF RADIAL INTEGRALS will next be printed. These pages contain only those radial in-
tegrals that are explicitly computed; the radial integrals for even Lout are printed first.
Three columns give the real and imaginary parts and the magnitude of the radial inte-
grals. These are followed by two columns labeled CANCELLATIONS the second of which is
not presently used. The first column gives an indication of the numerical cancellations
that occurred in the dRidRo integral and is defined as

∫

dRidRoRiRo |f(out)Hf(in)|
∣

∣

∫

dRidRoRiRof(out)Hf(in)
∣

∣

(7.2)

where the denominator is just the magnitude of the radial integral. The entries in this
column are usually quite large (>100) for the smaller values of L, since these radial
integrals are small by virtue of large cancellations. However the values for L ≥ Lcrit are
usually less than 5, indicating that there was not much difficulty associated with these
radial integrals. If all of the entries in this column are greater than 10, then the reaction is
in some way poorly matched, and the convergence of the computed cross sections should
be carefully checked.

The page labeled INTERPOLATION AND EXTRAPOLATION IN L gives a summary of the
extrapolation of the radial integrals from LMAX to L′

max. The value of L′

max is printed
in the line MAXIMUM L0 USED... This line may be preceded or followed by a number
of warning or error messages indicating difficulties in the extrapolation to L′

max. These
difficulties are usually associated with the fact that some (Lx, Lin-Lout) combinations are
poorly matched and the computed radial integrals contain large errors. If the errors are
large enough, the computed radial integrals will not have the correct asymptotic form,
and it will be impossible to fit the extrapolating function to them. If the extrapolated
radial integrals will have a negligible effect on the computed differential cross sections,
then these error messages may be ignored. An indication of this may be found in the
table labeled SUMMARY OF EXTRAPOLATION PARAMETERS that is printed at the end of this
page. The (Lx, Lin-Lout) combinations that could not be extrapolated have zeros in
the columns that give the extrapolation parameters. The columns labeled PEAK give
the Lout for which the radial integrals with the printed values of Lx and Lin-Lout have
their maximum magnitude and that maximum magnitude. If the maximum magnitude
is small compared to other maximum magnitudes, then the extrapolated values (which
are usually at least a factor 10 smaller) are probably negligible and the failure to be able
to extrapolate may be safely ignored.

The pages labeled REACTION AND ELASTIC PARTIAL... give all of the radial integrals
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and the elastic S-matrix elements for LMIN ≤ L ≤ LMAX. The format of these pages was
explained in Sec 6.3.

Finally the cross sections are given on the pages labeled COMPUTATION OF CROSS

SECTIONS. Most of the entries on these pages were also explained in Sec. 6.3, and only the
differences will be given here. The column labeled % FROM L > LMAX gives (as a percent-
age) the contribution to the cross section from the radial integrals for LMAX < L ≤ L′

max.
Our experience is that this contribution is usually accurate to somewhat better than 10%.
Thus if at a given angle the entry is 5%, one may assume that the extrapolation proce-
dure introduced an error of less than 0.5% to the differential cross section. If more than
one Lx can contribute to the reaction, there will be columns giving the differential cross
section for each Lx; the cross section in the second column is the sum of these partial
cross sections. Of course the spectroscopic factors are included in all cross sections.
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Control Keywords

In this section we describe some of the control keywords that are available in ptolemy.
These keywords may generally be placed anywhere in the ptolemy input and they
usually cause some sort of immediate action; they are not followed by a semi-colon.
These keywords are listed more or less in decreasing order of interest; all of them except
RETURN are optional.

The RETURN or END keyword should be used as the last keyword in every ptolemy

job. It causes allocator statistics to be printed and then returns control to the operating
system.

The HEADER keyword may be used to enter a header that will be printed on the top of
most pages of the ptolemy output. The header will consist of the remainder of the input
line beginning with the first alphanumeric following the HEADER keyword. In addition the
REACTION specification (if it is entered) and the laboratory energy will always be part of
the header.

The KEEP keyword is used to keep ptolemy results in a form suitable for later recovery
with the speakeasy KEPT command. KEEP must be followed by two names: the first is
the ptolemy name of the item to be kept and the second is the name under which it is
to be saved in the current directory (with an operating-system dependent suffix). This
second name must be different from all other names already in the directory or else the
new object will replace the previously kept object. The following is a list of the ptolemy

names of the objects the user is most likely to want to keep:

• ANGLEGRID - A 3-element array containing ANGLESTEP, ANGLEMIN and ANGLEMAX.

• CROSSSEC - The differential cross section on the (ANGLEMIN, ANGLESTEP, ANGLEMAX)
grid. For DWBA calculations this contains the reaction cross section. For stand-
alone elastic scattering it contains the elastic differential cross sections. In both
cases it is in mb/sr.

• TORUTHERFORD - The ratio of the elastic scattering differential cross section to the
Rutherford cross section. This array is produced only in stand-alone elastic scat-
tering.
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• LXCROSSSECTION - A Num(angles) × Num(Lx) array containing the DWBA cross
sections for each Lx (summed over Mx) at each angle.

• MXCROSSSECTION - A Num(angles) × Num(Li,Lx) array containing the DWBA cross
sections for each (Lx, Mx) at each angle. The order of the columns is

(Lx,Mx) = (Lx,min, 0), (Lx,min, 1), ..., (Lx,min, Lx,min),

(Lx,min + 1, 0), ..., (Lx,max, Lx,max) (8.1)

This array is available to KEEP only if the keyword SAVEMXCROSS (see below) has
been entered.

• SMAG and SPHASE - The magnitude and phase of the S-matrices. These two objects
are each Num(L) × Num(Li,Lx) arrays. The arrangement of the columns is such
that S(Lx,Li,Lout) is indexed as SMAG(j,k) and SPHASE(j,k) with

j = Lout − LMIN + 1

k = [(Lx + Lx,min + 1)(Lx − Lx,min) + Lx + Li − Lout]/2 + 1

• B - A Num(angles) × Num(Li,Lx) complex array containing the B(Lx,Mx,θ) of Eq
??? or 2.55 for each (Lx,Mx) at each angle. The columns have the same order as
for MXCROSSSECTION. This array is available for KEEP only if the SAVEB keyword
(see below) has been entered.

• SIN - The elastic S-matrix elements in the incoming channel.

• SOUT - The elastic S-matrix elements in the outgoing channel.

• WAVER, WAVEI - The real and imaginary parts of the most recently computed elastic
scattering wavefunction.

• PHIn - The n’th bound state wavefunction.

• HEADER - A character array (up to 65 characters) containing the HEADER.

• REACTION - A character array (up to 45 characters) containing the REACTION or
CHANNEL specification.

• ELAB - A scalar with the laboratory energy.

The following symbols were used in the above definitions of the objects for the KEEP

command:

• Lx,max - Maximum Lx (transfered L)

• Lx,min - Minimum Lx

• Num(angles) - Number of angles



65

• Num(L) - L′

max-LMIN+1

• Num(Lx) - Lx,max-Lx,min+1

• Num(Li,Lx) - [(Lx,max+Lx,min+2)(Lx,max-Lx,min+1)]/2 (This expression does not
take into account abnormal parity restrictions but it is always the correct expression
to use.)

The SAVEMXCROSS keyword may be entered to cause the DWBA cross sections for
every (Lx, Mx) and angle to be saved. The SAVEB keyword may be entered to cause the
B(Lx,Mx,θ) to be saved for every (Lx,Mx) and angle. The resulting objects (MXCROSSSECTION
and B) may then be stored using the KEEP command. The defaults are NOSAVEMXCROSS

and NOSAVEB.
The WRITENS command is an alternative method of storing objects that are in the

ptolemy allocator for use by other programs. The command is followed by the name or
number of an object in the allocator. The object will be written on Fortran unit 15 using
a (1X, 4G17.8) format. The names and structures of the available objects are given in
the description of the KEEP command above, however two-dimensional objects will be
written as the transpose of the Speakeasy formats given above.

The NEWPAGE keyword may be used to cause subsequent ptolemy output to begin
on a new page. It will probably be used only if several stand-alone two-body calculations
are being done.

The KEYWORDS keyword may be used at any time to cause a listing of the current
settings of all data-entering and option-choosing keywords. It is suggested that it be
used at the end of all runs to provide a verification of the parameters and options in
effect. The LISTKEYS keyword will list the names of all valid keywords.

The UNDEFINE keyword may be used to set the status of a keyword to ”undefined.” It
is followed by the name of the keyword that is to be undefined. The most likely use of
UNDEFINE is to undefine a potential radius (R, RI, etc.) during stand-alone calculations
so that it will automatically be computed from the corresponding radius parameter (R0,
RI0, etc.) the next time it is needed. One may also want to undefine STEPSPER after the
use of PARAMETERSET so that a specific STEPSIZE may be entered.

The NSCATALOG keyword may be used at any time to provide a list of the names
and sizes of all currently defined objects in the allocator. It will also give the NSSTATUS

output.
The NSSTATUS keyword will cause a short summary of the allocator status to be

printed. This summary will show the allocator size, its current in-use size and the peak
in-use size. This summary is automatically printed at the end of all ptolemy jobs.

The SIZE keyword may be used to specify in some versions of ptolemy the size of
the allocator (the ptolemy work area); it is the size in bytes of the allocator. If it is to
be used, the SIZE keyword should be on the first line of ptolemy input.

The DUMP or NSDUMP keywords may be used to print an object in the allocator. They
are followed by the name or number of the object to be printed.

The RESET keyword may be used to cause ptolemy to be set back to its initial
status. The complete allocator is cleared and all keywords are set to their default values.
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However the allocator size may not be changed after a RESET. The use of RESET allows
several independent calculations to be made in one job. If it is desired to do a SAVEHS

calculation and immediately follow it with several USEHS calculations, each USEHS step
should be preceded with a RESET.

The CLEAR keyword causes the allocator to be cleared. All objects are removed from
the allocator. However none of the keyword settings are changed. The size of the allocator
may not be respecified after a CLEAR command.

The COPY keyword may be used to copy the data in an object in the allocator into a
second object. The form of the command is

COPY fromname toname

where “fromname” must be the name of an object already in the allocator. If “toname”
already exists in the allocator and is the same size as “fromname,” the data in “fromname”
will be copied into “toname.” Otherwise “toname” will be created (or changed to have
the correct size) and then the copy will occur. In all cases “fromname” is not changed.
The COPY command may be used to “fool” ptolemy into using a different potential or
wavefunction in a subsequent part of the calculation.

The RENAME command is used to change the name of an object in the allocator. Its
form is

RENAME oldname newname
where “oldname” must be the name of an object in the allocator. The name of this
object will be changed to “newname.” There must not be another object with the name
“newname” already in the allocator; if there is, inconsistent results may occur.

The FREE command is used to delete an object from the allocator and thus make its
space available for other objects. The command is followed by the name of the object
to be freed. If the object does not exist, a warning will be printed and processing will
continue with the next input line.

In the WRITENS, COPY, RENAME and FREE commands the first object name may be
replaced with the actual number of the object in the allocator. However this practice is
not recommended since it is difficult to predict the numbers of the objects.

An object may be added to or changed in the allocator by means of the ALLOCATE

command. This command has the form

ALLOCATE name list-of-numbers

where “name” will be the name of the object in the allocator. The number of elements
in the list-of-numbers determines the length of the object. The numbers may be in any
format, with as many or as few as is desired per input line. If an object with the name
“name” already exists, it is replaced with the new object as defined by the ALLOCATE

command. In this manner one may read in arbitrary bound-state wavefunctions after
ptolemy has computed the bound-state wavefunctions for a Woods-Saxon potential.
The new wavefunctions will then be used in a subsequent DWBA calculation.

The BIMULT keyword causes two objects (they may be the same object) to be multi-
plied together. The form of the command is

BIMULT name1 name2

where “name1” and “name2” are the names of the two arrays to be multiplied together.
They must be of the same length. They will be multiplied together in an element-by-
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element fashion and the resulting array will be stored in a new unnamed object in the
allocator. Its number will be printed in the output. The numbers of the input arrays
may be used inplace of their names.

The keyword NUMRNUM may be used to compute the matrix element between two
wavefunctions of a power of r. The form of the command is

NUMRNUM name1 power name2

where “name1” and “name2” are the names (or numbers) of two objects in the allocator.
They must be of the same length and must be wavefunctions that were computed with the
present value of STEPSIZE. The integer “power” is the power of r that is to be included
in the integral. The integral

∫ ASY MPTOPIA

0

drrpower × name1 × name2 (8.2)

will be computed and printed.

The keyword NRNLIMS may be used to compute the partial matrix element of a power
of r. The form of the command is

NRNLIMS name1 power name2 start stop

where “name1”, “name2,” and “power” are the same as for NUMRNUM. The range of the
integral is specified by “start” and “stop” which are specified in fm.

The keyword PRINT may be used to control the amount of printing that ptolemy

does. It is followed by a five-digit integer that indicates the amount of printing that is to
occur. Each digit controls different items of the printed output. The larger the digit, the
more information that is printed. The default value is PRINT = 10001 which results in
summaries of the input, the radial integral phases and magnitudes and the cross sections
being printed. If the five-digit number is written as PRINT = TMCXI, the significance of
the digits is:
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I = 0 - Only print the differential cross sections and final fit values.
1 - (Default) - Print summaries of input, magnitudes and phases of the radial

integrals and elastic S-matrices in addition to output for
PRINT=0. For fits the initial and final values are
shown along with a summary of the path followed by the fitter.

2 - Print radial integrals as they are computed and give estimates of their
cancellations. This option is strongly recommended as large cancellations
are an indication that the convergence should be checked. The singular
values are printed by the QUAVER fitter.

≥ 3 - Print debugging information.
X = 1 - The WKB amplitudes used to find the critical L are printed for each L.

2 - Debugging output is printed by the WKB routine.
C = 1 - Several lines are printed for every chi-squared function calculation

made during the course of a fit. Debugging output from the Coulomb
excitation integrals is printed. Work arrays are not freed following
the radial integral computation.

2 - Convergence to the bound-state eigenvalue is printed.
4 - Debugging output from the L-interpolation is printed.

M = 1 - The elastic S-matrix element is printed every time a scattering wavefunction
is computed.

4 - Debugging output is produced by the elastic wavefunction routine.
T = 1 - (Default) - Show conversion of FIT data to standard form.

4 - Some debugging output about the transfer effective interaction is produced.
9 - Enormous amounts of debugging output from the transfer effective

interaction (the end has never been seen) are produced.
The value of PRINT may be changed at any time to effect subsequent printing except

that in DWBA calculations the value of PRINT that was in effect at the time of the
specification of the outgoing scattering state will determine the printing of the elastic
S-matrices during the computation of the radial integrals.
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List of all Keywords

The following lists contain brief descriptions and default values for all the ptolemy key-
words. Some of these keywords have not been discussed in the above text either because
they are primarily designed for use in debugging ptolemy or because it is doubtful that
the average user will need them. They are all included here for completeness. The entry
“none” under “Default” means that the keyword is initially undefined. If it is not defined
in the input and is necessary to the calculation, an error message will be printed and
the job aborted. The entry “none*” under “Default” means that the keyword is initially
undefined, but if it is not defined in the input, an appropriate value will be found by
ptolemy.

The keywords CROSSSECTION, GRIDSETUP, LINTERPOL, and RADIALINT are used in
place of the final semicolon to initiate individual stages of the DWBA calculation and
should not be used in standard calculations. If desired the keywords DWBA or NZRDWBA

may be used before the final semicolon to indicate that a DWBA calculation is to be
done but they are not, at present, necessary.

All lengths are specified in fm and all energies are in MeV.
70
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A.1 Reaction-defining Keywords

Keyword Default Meaning
BETA none Nuclear deformation parameter
BETACOULOMB none Coulomb deformation parameter
BELX none B (E, Lx, excitation)
E*i 0 Excitation energy in MeV of nucleus i

(i = A, B, BIGA, BIGB, X)
ECM none Incoming c. m.scattering energy in MeV
ELAB none Incoming Laboratory scatter energy in MeV
Ji none Intrinsic spin of nucleus i
Mi none Mass in AMU of nucleus i

(i = A, B, BIGA, BIGB, X)
MXCi none Total mass excess in MeV of nucleus i

(i = A, B, BIGA, BIGB, X)
MXCGi none Ground state mass excess in MeV of nucleus i

(i = A, B, BIGA, BIGB, X)
NUCONLY off Use only the nuclear part of the B.S.

potential in the interaction potential
Q none Q-value in MeV
REACTION none Defines the reaction in standard notation
SPAMP 1. Projectile spectroscopic amplitude
SPAMT 1. Target spectroscopic amplitude
SPFACP 1. Projectile spectroscopic factor
SPFACT 1. Target spectroscopic factor
USECORE on Use Coulomb and real nuclear core corrections

in the interaction potential
USECOULOMB off Use Coulomb with core corrections in the

interaction potential
USEPROJECTILE on Use projectile B.S. potential as the interactional

potential
USESIMPCOULOMB off Use Coulomb of just one B.S. in the interaction potential
USETARGET off Use target B.S. potential as the interaction potential
Zi none Charge of nucleus i

(i = A, B, BIGA, BIGB, X)
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A.2 Two-body State Keywords

Keyword Default Meaning
A none Real W.S.diffuseness
AE 0 AE*ELAB is added to A

AESQ 0 AESQ*ELAB2 is added to A

AI none Imaginary W.S. diffuseness
AIE 0 AIE*ELAB is added to AI

AIESQ 0 AIESQ*ELAB2 is added to AI

ASI none Surface absorption diffuseness
ASO none Real spin-orbit diffuseness
ASOI none Imaginary spin orbit diffuseness
CHANNEL none Specifies a two-body channel
E none Two-body c. m.energy in MeV

(ELAB or ECM may be used in stand-alone or in fit)
EINVERSE off Energy-dependent pots are in 1/ELAB
EPOWERS on Energy-dependent pots are in ELAB

E*P none Projectile excitation energy
E*T none Target excitation energy
J none Total two-body angular momentum
JP none Total projectile angular momentum (for spin-orbit)
I none Orbital angular momentum
M none Reduced mass in Mev/c2

MP none Projectile mass in AMU
MT none Target mass in AMU
NODES none Number of bound state nodes for r > 0.
R none Real W.S.radius.
R0 none Real W.S. radius parameter
R0E 0 R0E*ELAB is added to R0

R0ESQ 0 R0ESQ*ELAB2 is added to R0

RC none Coulomb radius
RC0 none Coulomb radius parameter
RCP none Coulomb radius of projectile
RCT none Coulomb radius of target
RC0P none Coulomb radius parameter of projectile
RC0T none Coulomb radius parameter of target
RI none Imaginary W.S. radius
RI0 none Imaginary W.S. radius parameter
RI0E 0 RI0E*ELAB is added to RI0

RI0ESQ 0 RI0*ELAB2 is added to RI0

RSI none Surface absorption radius
RSI0 none Surface absorption radius parameter
RSO none Real spin-orbit radius
RSO0 none Real spin-orbit radius parameter
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Keyword Default Meaning
RSOI none Imaginary spin-orbit radius
RSOI0 none Imaginary spin-orbit radius parameter
SP none Projectile spin
SPAM none Channel spectroscopic amplitude
ST none Target spin
TAU 0 Real S.O. depth relative to real W.S. depth
TAUI 0 Imaginary S.O. depth relative to imaginary W.S. depth
V 0 Real W.S. well depth
VE 0 VE*ELAB is added to V

VESQ 0 VESQ*ELAB2 is added to V

VI 0 Imaginary W.S.well depth
VIE 0 VIE*ELAB is added to VI

VIESQ 0 VIESQ*ELAB2 is added to VI

VSI 0 Surface absorption strength
VSO 0 Real S.O. well depth
VSOI 0 Imaginary S.O. well depth
ZP none Projectile charge
ZT none Target charge



74 APPENDIX A. LIST OF ALL KEYWORDS

A.3 Calculation Keywords

Keyword Default Meaning
ACCURACY 10−2 Accuracy of bound state convergence
ANGLEMAX 90 Maximum scattering angle in degrees
ANGLEMIN 0 Minimum scattering angle in degrees
ANGLESTEP 1 Scattering angle increment in degrees
ASYMPTOPIA 20 Start of asymptotic region
COULOMBMULT 1. Determines start of Belling expansion
DATA – Enters experimental data for a fit
DELTAVK 0.05 Bound state search step size
DERIVSTEP 10−6 Stepsize for numeric gradient of potentials
DWCUTOFF 10−3 Minimum relative integrand to use in DWBA integral;

minimum relative Coulomb amplitude for excitation
FITACCURACY 10−3 Required relative accuracy of optical parameter fit
FITMULTIPLE 500 Meaning depends on optical model fitter in use
FITRATIO 10−4 Meaning depends of optical model fitter in use
GAMMADIF 5 DIF compression parameter
GAMMASUM 1 SUM compression parameter
INELASACC 10−5 Required accuracy of Coulomb excitation
LBACK none* LMAX-LBACK is start of L-extrapolation
LMAX none* Maximum scattering of partial wave L
LMAXADD 30 LMAX = max(LMAXADD + LC)
LMAXMULT 1.6 LMAXMULT×LC

LMIN none* Minimum scattering partial wave L
LMINMULT 0.6 LMIN = min(LMINMULT + LC)
LMINSUB 20 LC - LMINSUB
LOOKSTEP 250 Number of steps in grid-searching for φ
LSTEP 1 Increment of L in radial integral computations.

In between values are found by interpolation.
LX none Exchanged orbital angular momentum
MAPDIFF 1 Gauss-point map type for DIF grid
MAPSUM 2 Gauss-point map type for SUM grid
MAXCOULITER 80 Max iterations for Belling’s expansion
MAXFUNCTIONS 50 Maximum number of chi. sgr. computations

allowed in an optical fit mode
MAXITER 10 Max. number of iterations in bound state search
MAXLEXTRAP 100 Maximum allowed L-extrapolation
MIDMULT 2 SUMMID multiplier
NAITKEN 4 degree of interpolation polynomial
NBACK 4 Num. of backward steps in scattering wave

asymptotic matching
NCOSINE 256 Size of fast-cosine table
NPCOULOMB 8 Num. points/cycle in Coulomb excitation
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Keyword Default Meaning
NPDIF 10 Num. of points in DIF grid
NPHIADD 4 Num. of steps to extend φ grid
NPPHI 10 Num. of points in φ grid
NPSUM 15 Num. of computed points in SUM grid
NUMRANDOM 0 Num. of random steps for some fitters
REINITIALIZ 0 Number of iterations between reinitialization

of the fitter (mainly for POWELL65)
STEPSIZE 0.1 Step size for solutions of two-body differential equations
STEPSPER none Number of steps per “wavelength” for solutions of

two body equations
STEP1R 1 Starting value for scattering state differential equations
STEP1I 1 Starting value for scattering state differential equations
SUMMAX none* End of SUM grid
SUMMID none* Clustering point of SUM grid
SUMMIN none* Beginning of SUM grid
SUMPOINTS 6 Num. points/wavelength for SUM grid
VPOLYORDER 3 Order of interpolating poly for DIF grids
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A.4 Control and Option-selecting Keywords

Keyword Default Meaning
ALLOCATE - Enter data into the allocator
BATCH none* Enter batch mode – an error terminates things
BIMULT - Multiply two arrays together
BOUNDSTATE off Stand-alone bound state is being entered
CHECKASYMP off Check approach of scattering state to asymptotic form
CLEAR - Clear allocator of all defined objects
CMANGLES on Angle grid is in c. m.
COMPLEXWAVE on Scattering waves have complex phase
COPY - Copy one object in the allocator into another
CROSSSECTION off Entering data for DWBA cross section stage
DAVIDON off Use the Davidon variable-metric fitter
DERIVCHECK off Check the analytic chi. sgr. gradients
DOASYMPT on Use Whittaker bound state asymptotic form
CALLTSO – Enter the TSO Command mode
DUMP – Print an object in the allocator
DUMPALL – The entire allocator is printed
DUMP2 – Print an INTEGER (2) object in the allocator
DWBA – DWBA input is being entered
ECHO on Input lines are printed in the output
ELASTIC off Compute cross section in stand-alone scattering
FIT off Do an optical model fit and specify the parameters

to be varied
FITE off The bound state energy is matched to the potential
FITMODE 1 Meaning depends on optical model fitter in use
FITV on The depth of the real part of the W.S.well is matched

to the bound state energy
FREE – Remove an object from the allocator
GRIDSETUP off Grid setup input is being entered
HEADER – Defines the header for subsequent pages
INCOMING off The incoming scattering state is being defined
KEEP – Keep an object for subsequent Speakeasy use
KEYWORDS – List all keywords and their present values
LABANGLES off Angle grid is in laboratory
LINEAR off Only use linear extrapolation in the bound state search
LISTKEYS – List all keywords
LMCHOL on Use the LMCHOL sum-of-squares minimizer with
MINIM off Use the Fletcher variable-metric fitter
NEWPAGE – Go to new page for output
NOCHECKASYM on Do not check asymptotic form of scattering solution
NOECHO off Do not print input lines in the output
NOELASTIC on Do not compute cross sections in stand-alone

scattering problems
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Keyword Default Meaning
NOSAVEB on Do not save B(Lx, Mx) cross sections
NOSAVEMXCROSS on Do not save (Lx, Mx) cross sections
NRNLIMS – Compute partial overlaps of two functions
NSCATALOG – List names of all objects in allocator
NSDUMP – Print an object in the allocator
NSSTATUS – Print allocator statistics
NUMRNUM – Compute overlap of two functions
NZRDWBA off Input is for a nonzero-range DWBA
OUTGOING off Input is for the outgoing scattering state
PARAMETERSET none Specify a group of keyword definitions
POWELL65 off Use the Powell 1965 sum-of-squares minimizer
PRINT 10001 Controls amount of printing
PRINTFIT – Print present E and V
PRINTWAV – Print last computed wavefunction
PROJECTILE off Projectile B.S.definition is being input
QUADRATIC on Use parabolic extrapolation in B.S.search
QUAVER off Use the QUAVER quasi-Newton fitter
RADIALINT off Input is for radial integration stage
REALWAVE off Real scattering waves for real pots
RENAME – Change the name of an object in the allocator
RESET – Initialize for a new calculation –

allocator is CLEARed and all keywords set to initial status
RETURN – Terminate ptolemy

ROCORD off Use the ROCORD generalized minimizer
SAVEHS off Form factor integrals will be saved
SAVEB off Save the B(Lx, Mx, angle) for KEEP
SAVEMXCROSS off Save (Lx, Mx) cross sections for KEEP
SCATTERING off Input is for stand-alone scattering
SIZE 50 × 106 Allocator size in bytes
SKIPASYMP off Do not use Whittaker function as asymptotic form

of B.S.wavefunctions
TARGET off Input is for Target B.S.
TSO none* Operating in interactive mode –

errors allow corrections and retries
UNDEFINE – Set a keyword to undefined status
USEHS off Use previously computed form factor integrals
WRITENS – Write an object onto Fortran file 15
WRITESTEP none Interval (fm) at which wavefunctions are to be tabulated

A.5 Sub-keywords for DATA

The following are keywords that may appear within the parentheses that follow the DATA

keyword.
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Keyword Default Meaning
ANGLE – C. m. angles of the data are being entered
ANGLESHIFT 0 Amount (in degrees) by which the angles

are to be shifted in the laboratory frame
CHANNEL – Elastic channel of following data
CMANGLE – C. m. angles of data are being entered
CMSIGMA – C. m. cross sections in mb are being entered
ELAB previous value Laboratory energy data
ERROR – Errors have same units as data
LABANGLE – Lab. angles are being entered
LABSIGMA – Lab. cross sections in mb are being entered
MBERROR – Data errors are in millibarns
PERCENTERR – Data errors are in percent
POLARIZATION – Presently this data is ignored
RENORMALIZA 1 A quantity that will multiply each

experimental cross section
SIGMA – Data is cross section in mb in ANGLE frame
SIGMATORUTH – Data is a ratio of cross section to

Rutherford cross section
WEIGHT 1 Each term in the chi-squared sum for the

present data group is multiplied by the WEIGHT

*A value will be computed by the program if one is not given by the user.
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Sample Ptolemy Jobs

The following is the input for several sample ptolemy jobs. These jobs use standard
ptolemy input sequences and, to reduce confusion, do not explore the alternative ways
of defining a problem. The outputs of these examples are separately available from the
authors of this report.

B.1 Optical Model Fit

The following is an example of a five-parameter optical model fit to data at two energies.
The depth of the real part of the potential is given an energy dependence while the rest
of the potential parameters have no energy dependence. All of the potential radii will
be equal to each other throughout the search while the real and imaginary diffusenesses
will be separately varied. The search is first made with computed differential cross sec-
tions of moderate precision and is then repeated with more accurate values. Finally the
differential cross sections for the two energies are printed on a uniform angular grid.

HEADER: EXAMPLE 1 - A TWO-ENERGY OPTICAL MODEL FIT

CHANNEL: 16O + 208PB

FIT ( R0=RI0=RC0 A AI V VE )

PARAMETERSET EL1

R0 = 1.3 A = .5 AI = .5 V = 40, VE = -.2 VI = 15

DATA ( ELAB=104 ANGLE SIGMATORU PERCENTER

$ KOVAR ET.AL. O16 ON PB208 AT 104 MEV
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26.87 1.120 15.

32.21 0.994 5.

37.54 1.005 5.

42.84 1.006 5.

45.49 1.010 5.

48.13 1.000 10.

50.76 1.017 5.

53.39 1.020 10.

56.01 1.083 5.

58.62 1.170 5.

61.23 1.200 5.

63.83 1.120 10.

66.43 0.991 5.

69.01 0.790 10.

71.59 0.599 5.

74.16 0.432 15.

76.72 0.290 10.

79.27 0.209 10.

84.36 0.086 15.

89.40 0.038 10.

$ KOVAR ET.AL. O16 ON PB208 AT $ ELAB = 140 WEIGHT = .3
10.8 0.932 5.0

16.1 1.130 5.0

21.5 1.050 2.0

27.9 1.040 2.0

32.2 0.975 2.0

37.5 1.190 2.0

42.8 0.877 2.0

45.5 0.628 5.0

48.1 0.286 5.0

53.4 0.061 5.0

58.6 0.014 5.0

)

;

PARAMETERSET EL2 ;

ELASTIC SCATTERING

ELAB = 104 ;

ELAB = 140 ;

RETURN

The second example is of inelastic excitation. The B(E2) value is used to determine
both the Coulomb and nuclear deformation parameters. The optical potential in the
incoming state will also be used in the outgoing state and for computing the effective
interaction.

//EXAMPLE2 JOB (F12345,5,0,2),REGION=200K,CLASS=C
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account card

// EXEC PTOLEMY

HEADER: EXAMPLE 2 - INELASTIC EXCITATION

REACTION: 44CA(16O, 16O)44CA(2+ 1.156) ELAB = 60

BELX = .0473

PARAMETERSET INELOCA1

INCOMING

V = 108 R0 = 1.207 A = .5074

VI = 21.2765 RI0 = 1.207 AI = .5192

RC0 = 1.2

;

OUTGOING

;

; $ THIS FINAL SEMI-COLON STARTS THE DWBA

RETURN

B.2 Transfer Reaction

The following is a typical DWBA transfer input. Note the use of PRINT=2 to cause
the cancellations in the computed radial integrals to be printed. Although both bound
states involve a spin-orbit force, it is not necessary to specify JP since it can be uniquely
determined by ptolemy from the other known spins and the given value of L.
HEADER: EXAMPLE 3 - A SIMPLE TRANSFER CALCULATION

REACTION: 208PB(16O 15N)209BI(5/2- 2.84) ELAB = 104

PARAMETERSET PB100A

PRINT = 2

PROJECTILE

NODES = 0 L = 1

R0 = 1.20 A=.65 RC0 = 1.20

VSO = 7

;

TARGET

NODES = 1 L = 3

R0 = 1.28 A=.76

VSO = 6 RSO0 = 1.09 ASO = .6

;

INCOMING

RC0 = 1.3 R0 = 1.2802 A = .5975 RI0 = 1.2962 AI = .5424

V = 20 VI = 15

;

OUTGOING ;

; $ THIS FINAL SEMI-COLON STARTS THE DWBA

KEYWORDS

RETURN


