Empirical Pion and Kaon PDFs

Nobuo Sato
University of Connecticut
Pion and Kaon Structure at an Electron-Ion Collider, Argonne, 2017
Motivations

PHYSICAL REVIEW D 93, 054011 (2016)

Pion structure function from leading neutron electroproduction
and SU(2) flavor asymmetry

J. R. McKenney,¹,²,³ Nobuo Sato,² W. Melnitchouk,² and Chueng-Ryong Ji¹
¹North Carolina State University, Raleigh, North Carolina 27695, USA
²Jefferson Lab, Newport News, Virginia 23606, USA
³University of North Carolina, Chapel Hill, North Carolina 27599, USA
(Received 15 December 2015; published 7 March 2016)

- Study pion structure using pion exchange models and pQCD
- **Unknowns:**
 - pion splitting functions (UV regulator as a parameter)
 - small $x \ F_2^\pi$ (shape parameters)
- **Input:**
 - leading neutron cross sections from H1 and Zeus
 - $\bar{d} - \bar{u}$ asymmetry from E866
 - large x pion PDFs (SMRS)
Motivations

PHYSICAL REVIEW D 93, 054011 (2016)

Pion structure function from leading neutron electroproduction and SU(2) flavor asymmetry

J. R. McKenney,1,2,3 Nobuo Sato,2 W. Melnitchouk,2 and Chueng-Ryong Ji1

1North Carolina State University, Raleigh, North Carolina 27695, USA
2Jefferson Lab, Newport News, Virginia 23606, USA
3University of North Carolina, Chapel Hill, North Carolina 27599, USA
(Received 15 December 2015; published 7 March 2016)
Feasibility to constrain F_2^π at small x

Potential reduction of the uncertainty in the pion sea PDFs

Next step: fit pion PDFs instead of F_2^π

... but first we need to learn how to fit pion PDFs at large x
Data analysis framework:

The goal is to estimate:

\[E[\mathcal{O}] = \int d^n a \ P(a|\text{data}) \ \mathcal{O}(a) \]

\[V[\mathcal{O}] = \int d^n a \ P(a|\text{data}) \ [\mathcal{O}(a) - E[\mathcal{O}]]^2 \]

- \(\mathbf{a} = (N, a, b, \ldots) \) is a vector of parameters

 i.e. \(f(x, Q_0^2) = N x^a (1 - x)^b P(x) \)

- \(\mathcal{O}(\mathbf{a}) \) is an observable

 i.e. PDFs, PPDFs, FF, cross sections
Data analysis framework:

The goal is to estimate:

\[
E[\mathcal{O}] = \int d^m a \ P(a|data) \ \mathcal{O}(a)
\]

\[
V[\mathcal{O}] = \int d^m a \ P(a|data) \ [\mathcal{O}(a) - E[\mathcal{O}]]^2
\]

Maximum Likelihood

- Maximize \(P(a|data) \rightarrow a_0 \)

- \(E[\mathcal{O}] \approx \mathcal{O}(a_0) \)

- \(V[\mathcal{O}] \approx \text{Hessian, Lagrange multipliers} \)
Data analysis framework:

The goal is to estimate:

\[
E[O] = \int d^n a \ P(a|data) \ O(a)
\]

\[
V[O] = \int d^n a \ P(a|data) \ [O(a) - E[O]]^2
\]

Maximum Likelihood

- Maximize \(P(a|data) \rightarrow a_0 \)
- \(E[O] \approx O(a_0) \)
- \(V[O] \approx \text{Hessian, Lagrange multipliers} \)

Monte Carlo methods

- \(P(a|data) \rightarrow \{a_k\} \)
- \(E[O] \approx \frac{1}{N} \sum_k O(a_k) \)
- \(V[O] \approx \frac{1}{N} \sum_k [O(a_k) - E[O]]^2 \)
Data analysis framework:

The goal is to estimate:

\[E[\mathcal{O}] = \int d^n a \ P(a|data) \ \mathcal{O}(a) \]

\[V[\mathcal{O}] = \int d^n a \ P(a|data) \left[\mathcal{O}(a) - E[\mathcal{O}] \right]^2 \]

Maximum Likelihood

- Maximize \(P(a|data) \rightarrow a_0 \)
- \(E[\mathcal{O}] \approx \mathcal{O}(a_0) \)
- \(V[\mathcal{O}] \approx \text{Hessian, Lagrange multipliers} \)

Monte Carlo methods

- \(P(a|data) \rightarrow \{a_k\} \)
- \(E[\mathcal{O}] \approx \frac{1}{N} \sum_k \mathcal{O}(a_k) \)
- \(V[\mathcal{O}] \approx \frac{1}{N} \sum_k [\mathcal{O}(a_k) - E[\mathcal{O}]]^2 \)
MC Methods

- MCMC or HMC
- bootstrap + cross validation + iterative convergence (JAM)
- Nested sampling (in this talk)
MC Methods

- MCMC or HMC
- bootstrap + cross validation + iterative convergence (JAM)
- **Nested sampling (in this talk)**

The idea

\[
Z = \int d^n a \; \mathcal{P}(a|\text{data})
\]

The algorithm returns \(\{a_k, w_k\}\)

\[
E[\mathcal{O}] \approx \frac{1}{N} \sum_k w_k \mathcal{O}(a_k)
\]

\[
V[\mathcal{O}] \approx \frac{1}{N} \sum_k w_k [\mathcal{O}(a_k) - E[\mathcal{O}]]^2
\]
MC Methods

- MCMC or HMC
- bootstrap + cross validation + iterative convergence (JAM)
- Nested sampling (in this talk)

The idea

\[Z = \int d^n a \ P(a | \text{data}) \]

The algorithm returns \(\{a_k, w_k\} \)

\[E[\mathcal{O}] \approx \frac{1}{N} \sum_k w_k \mathcal{O}(a_k) \]

\[V[\mathcal{O}] \approx \frac{1}{N} \sum_k w_k [\mathcal{O}(a_k) - E[\mathcal{O}]]^2 \]
Details of the fitting machinery

- The code is written entirely in python (Standard in modern data analysis)

- Mellin space based DGLAP solver up to NNLO (Benchmarked against PEGASUS)

- x space DY code at NLO using nCTEQ PDFs integrated within the Mellin space machinery (significant speed performance)

- Nested sampling software for the MC sampling (nestle)
The analysis

- **Data sets**
 - E615
 - NA10

- **Pion PDFs to be fitted**
 - \(q_v = \bar{u}_v = d_v \)
 - \(q_s = 2(u + \bar{d} + s) \)
 - \(g \)

- **Parametrization at \(Q_0^2 = 1 \text{GeV}^2 \)**
 - \(f(x) = N x^a (1 - x)^b \)
 - \(N_{qV} \) and \(N_g \) are fixed by sum rules
Data sets

![Graph showing data sets](image-url)
Nested sampling
Results

Fermilab – E615 PLab = 252GeV

CERN – NA10 PLab = 194GeV

CERN – NA10 PLab = 286GeV
Results

Fermilab – E615 PLab = 252GeV

CERN – NA10 PLab = 194GeV

CERN – NA10 PLab = 286GeV

$Q^2 = 1 \text{ GeV}^2$

$Q^2 = 10 \text{ GeV}^2$

$Q^2 = 100 \text{ GeV}^2$
Results

\[2 \int_0^1 dxxq_V(x) \]

\[\int_0^1 dxxq_S(x) \]

\[\int_0^1 dxxg(x) \]

<table>
<thead>
<tr>
<th></th>
<th>(Q^2 = 1 \text{ GeV}^2)</th>
<th>(Q^2 = 10 \text{ GeV}^2)</th>
<th>(Q^2 = 100 \text{ GeV}^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valence</td>
<td>0.566 ± 0.098</td>
<td>0.470 ± 0.081</td>
<td>0.413 ± 0.071</td>
</tr>
<tr>
<td>Sea</td>
<td>0.039 ± 0.095</td>
<td>0.036 ± 0.071</td>
<td>0.035 ± 0.058</td>
</tr>
<tr>
<td>Glue</td>
<td>0.202 ± 0.577</td>
<td>0.307 ± 0.422</td>
<td>0.356 ± 0.332</td>
</tr>
</tbody>
</table>
Outlook

■ new analysis of pions PDFs within the MC framework is on the way

■ inclusion of LN data from HERA will allow to constrain the sea PDF beyond SMRS

■ the Mellin machinery allows to extend the analysis to include threshold resummation

■ the fitting framework can be extended to perform EIC studies to test impact on pion PDFs