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Gauge Symmetries

A In the standard model dfigh energy physigghe interactions
are carried by vector bosons, which are excitations of gauge
(or broken gauge) fields

A In the context ofcondensed matter physigs

I Stringnets, Kitae\@toric code, Quantum double models,
dimermodels, spiriquids, etc.

I Emergent, effective fieltheories (HighT?)

A Very interesting nosrivial behaviour

I Local symmetnp Many conservation lawd Special
Hilbert space structure

I Nonperturbative physics



Gauge Theories

A Still involve many puzzling, nqrerturbative phenomena:
I Mass gap of Yanllills (pure gaugetheories,quarkconfinement

I Phases of no\belian gauge theories with fermionic matter
A Color superconductivity
A Quarkgluon Plasma
A Confinementtieconfinementof dynamical, fermioniccharges

I HighT,_superconductivity described by emergent gauge fields?



Lattice Gauge Theories

A Formulations of gauge theories on discrete space or
spacetime (Wilson, Kogi8usskindPolyakoX)

A Allow for lattice regularization in a gauge invariant way, as
well as many extremely successful nonperturbative
calculations using Mont€arlo methods (e.g. the hadronic
spectrum)

A Numerical calculations still face several difficulties, due to the
use of Euclidean spacetime for MorA@&arlo calculations:
I The sign problem, for fermions with finite chemical potential
I No reattime dynamics



Lattice Gauge Theories

2 New approaches are needed:E
A Tensor network methods i
A QuantumSimulation



Q. Sim. and TN for LGTs

A An active, rapidly growing research field

A Quantum Simulation (aroun@lyears):
I MPQGarching& Tel Aviv University
i ICFOBarcelona (Lewenstein)
I Innsbruck, Bern, Trieste, IQC (Zoller, Wiese, Batitnonte Muschik
I Heidelberg QOberthaler Berge$
¢

A Tensor Networks (aroundlyears):
I MPQ Garching
I Ghent (Verstraete)
I ICFO (Lewenstein)
I 1QOQI, Bern, Trieste, Ulm (Zoller, Wiesg,
I X



Quantum Simulation

A Take a model, which is either
I Theoretically unsolvable
I Numerically problematic
I Experimentally inaccessible
I Not known to exist in nature

A Map it to a fully controllable guantum systegguantum
simulator
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Global Symmetry

A Fermionic hopping

Hp = Z (E (k) ST (%) (x + &) + h.C.) + Zf\f (x) O (x) 1 (%)

A Invariant underglobal o o
. I
b (x) — € g (x)
G S o




Local Symmetry

A Fermionic hopping

Hp = Z (E (k) ST (%) (x + &) + h.C.) + Zf\f (x) O (x) 1 (%)

x.k

A Not invariant undetocal

P (x) — "y (x)

> 9 o




Local Symmetry

A Add another degree of freedorronnection

Hp = Z (E(;;,) ST (XU (%, k)0 (X + €x) + h..«:.) + ZM (x) O (x) 1 (x)

x.k

A Invariant underocal oo 0 0 0
® o o

| oo 090

Y (x) — "™y (x) ®* o o
U(x,y) — U (x,y) e W) G A A o



On a lattice, thefermionsare located at the
vertices (sites), and theonnectorsare defined
alonglinks; e.g., forU(1):

O 0 0 0 0
7 (X, u) _ ple JXter azt A, (z) . ei@(x,u) o ® ®
0(x,u) - OlLattice vector potentiat ¢ compact (angle) o 0 0 0 ¢
L(x,1)=¢" / /.dxgd;rgEl (x) O O O
Electric flux (or lattice E field) PP P
- U(1) angular momentum integer ? ?7

L(x,7).60(y.7)] = —id;;0x.y

/ TS (L) U () = U ()

/.x/ EXI+ ab,y " U (x, 1) - Electric flux raising operator.
L|m)=m|m
) m) = m )
Ulm) =|m+1)




Gauge Field Dynamics

[L (X, ?) 39 (yj)] — _ié‘ijéx,y
L(x,i),U (x,1)] = U (x,1)

U (x,1) - Electric flux raising operator.
L|m) =m|m) ST (x)U (%, k)¢ (X + €)
U ) = |m + 1) Raises the electric field on a link.

Suitabledkineticé energy term:

/ dP rE?

2
_ € E: P

N
7

| —

- Electric energy



Other gauge Invariant operators are
connectors along a closed loop
- Wilson loops

On a latticec products
of oriented link operators
(connectors)

W (C) =11U®

C




We can use these to add a self interaction
term to the Hamiltonian:

1

2e2
x.k,l

Hp = — (Uk (%, k) U (x + &, ) UT (x +&,k)UT (x,1) + h.c.) =

_QZCOb (x.k)+0(x+@&l)—0(x+¢&.k)—0(x,1))
X, k.l

1

3 /dD:U(VxA)Q:%/dD:CBQ

X + €; X + €
E} " E}
X X + €}, X X + €y,




SymmetryA Conserved Charge

A For the global symmetry, the conservazharge
IS the total number of fermions.

A For the local symmetry, we have local conservation laws,
which may be formulated by the Gau&slaw:



