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How can we we use guantum systems to achieve a
quantum advantage?

How can this be done in practice?
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New design concepts for 2D quantum networks

B Vision: ‘quantum internet’

Autonomous quantum error correction
Nat. Commun. 8, 1822 (2017).

B Vision: self-correcting quantum technology

See also: Work by David Schuster and Eliot Kapit
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Use quantum methods to
develop new tools for basic science



We want to understand:

Why is there more matter than antimatter in the universe?
What happens inside neutron stars?
What happened in the early universe?

What happens in heavy ion collisions in particle accelerators?



We want to understand:

Why is there more matter than antimatter in the universe?
 What happens inside neutron stars”
« What happened in the early universe?

What happens in heavy ion collisions in particle accelerators?

To find answers to these question we need:

New methods for gauge theories



Gauge Theories:

m) underlie our understanding how fundamental particles interact
(for example: Quantum Electrodynamics, Quantum Chromodynamics)

) are the backbone of the standard model
m) pPlay an important role in many areas of physics, including the

description of condensed matter systems displaying frustration or
topological order



Hard questions in gauge theories
(plagued the sign-problem)

Dynamical problems: Topological terms: High baryon density:
What happens in heavy ion collisions How can we understand the large What happens inside neutron stars
degree of CP violation in nature?

?
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Gauge Theories:

Quest to find sign-problem free methods

e Quantum Simulations

e Numerical methods based on tensor network states
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Gauge Theories:

Quest to find sign-problem free methods

e Quantum Simulations

e Numerical methods based on tensor network states — Frank Verstraete
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Gauge Theories:

Quest to find sign-problem free methods

e Quantum Simulations

« Numerical methods based on tensor network states

> Two routes towards the same goal.
Both paths are actively explored.

> This talk: Quantum simulations
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Short-term goal: Long-term vision:
Develop a new type of Simulate
Quantum Simulator Quantum Chromo Dynamics
Perform proof-of-concept Answer questions that
Experiments can not be tackled
numerically
>
Time

Atomic physics

{ N

Quantum High energy
chemistry physics
v
Condensed
matter physics




Quantum information science High energy physics




Quantum information science High energy physics

Review by Erez Zohar
v

Review Articles: Ann. Phys. 525, 777 (2013); Rep. Prog. Phys. 79, 014401 (2016); Contemporary Physics 57 388 (2016).



Quantum information science High energy physics

a a ..: A.. [J .

E. Martinez et al, Nature 534, 516 (2016).
X. Zhang, et al, Nature Commun. 9, 95 (2018).
N. Klco et al, arXiv:1803.03326 (2018).

New Experiments under way:
Waterloo: Chris Wilson (superconducting qubits)
Heidelberg: Fred Jendrzejewski, Marklus Oberthaler (cold atoms)
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Develop a new type of quantum simulator

Review Articles: Ann. Phys. 525, 777 (2013); Rep. Prog. Phys. 79, 014401 (2016); Contemporary Physics 57 388 (2016).
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Develop a new type of quantum simulator

Simulated states and dynamics must be gauge-invariant

Review Articles: Ann. Phys. 525, 777 (2013); Rep. Prog. Phys. 79, 014401 (2016); Contemporary Physics 57 388 (2016).



Develop a new type of quantum simulator

Simulated states and dynamics must be gauge-invariant

Difficulty for realizing quantum simulations of lattice gauge theories:
Implement a quantum many-body Hamiltonian

and a large set of local constraints (‘Gauss law’, in the case of QED: VE(r) = p(r))

Review Articles: Ann. Phys. 525, 777 (2013); Rep. Prog. Phys. 79, 014401 (2016); Contemporary Physics 57 388 (2016).



Develop a new type of quantum simulator

Simulated states and dynamics must be gauge-invariant

Difficulty for realizing quantum simulations of lattice gauge theories:
Implement a quantum many-body Hamiltonian

and a large set of local constraints (‘Gauss law’, in the case of QED: VE(r) = p(r))

Gauge-invariant
subspace

Hilbert space

Review Articles: Ann. Phys. 525, 777 (2013); Rep. Prog. Phys. 79, 014401 (2016); Contemporary Physics 57 388 (2016).



QED in (1+1) dimensions

Electromagnetic fields:
Vector potential: Ag(x), A1 (x)
Electric field: E(x) = 0pA1(x)
[E(z), A1(2")] = —id(z — o)

Matter fields:
\Ifl(ﬂf)
U(x) = ( Ty () )

Hamiltonian:
1
H,.. = /daz [—i\IﬂL(az)vl (61 —igA1) ¥(z) + mUT(2)U(z) + = FE?(z)

] |

71 = —to,  coupling strength (charge)  Fermion mass




The lattice Schwinger Model



The lattice Schwinger Model

01, L4 02, Lo O3,Lz Oy, Ly4 On—1,Ln_1
Omsméomum@gmmuOmEmmOmmO0OmmE@gma Oma@® mm O
d, o, O3 Dy Py Dy
Continuum Lattice
Vector potential A;(x) 0, = agAi(z,)
1
Electric field E(x) L, = EE(%)
([E(x), A1 (2")] = —id(x — x') 00, L] = i00.m,
Dirac spinor odd lattice sites:
®, = vVa¥Vi(z,
TEE Vi
s () even lattice sites:



Wilson’s staggered Fermions

e e vac vac e vac vac vac vac et
Omm 0mmO0mmOmmOmm Omm0mm OmmO = O
b D, o3 Dy Py Dy
A

one-component fermion fields

odd sites:

112

o
O = e

vac

even sites:

) et

O

112

vac

112




The lattice Schwinger Model

01, L1 02, Lo O3,Ls 04, L, On—1,LNn-1
O mmomm¢mmOmOmm O @ogmm Omm@O = O
d, o, O3 Dy Py Dy
Continuum

H... = /da: [—i\If‘L(az)fyl (61 —igAy) ¥(x) + m¥T(2)U(z) + %EZ(x)]

Lattice
N-—1 N N-1
Hyg = —iw Yy [®1e" @y —HC]+m>» (-1)"0f&,+J > L7
I n=1 n=1 T n=1
1 2
w = — J = g a
2a 2

J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).



Hamiltonian formulation of the Schwinger model:
J. Kogut and L. Susskind, Phys. Rev. D 11, 395 (1975).

H=—iwy V! [@;emncﬁnﬂ _ H.c.} F ISV R oY (—1)néE S,

r R
The dynamics is constraint by the Gauss law:

In the continuum in 3D: VE =p
Here: Lp—L,_1 =@ & — = [1 —(=1)"]




Local (gauge) symmetries

Local symmetry generators: 1Gn}

The Hamiltonian is invariant under gauge transformations of the form:
H = (I,e'*%") H (e ") [H,G,] =0

For IDQED: G, =L, — L,,_1 — ®'® — % [1—(=1)"]

The Hamiltonian does not mix eigenstates of G,, with different eigenvalues A, .

In the following, we restrict ourselves to the zero-charge subsector: Ag, =0, Vn
(# of particles = # of antiparticles).

G’I’L|\ijhysical> — O \V/n
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Real time dynamics in lattice gauge theories
with a trapped ion computer

Theory:
C. Muschik, M. Heyl, M. Dalmonte, P. Hauke, and P. Zoller

Experiment:
E. Martinez, P. Schindler, D. Nigg, A. Erhard, T. Monz, and R. Blatt

Nature 534, 516-519 (2016).
NJP 19, 103020 (2017).



Previous approaches:

Introduce the full Hilbert space
[matter + gauge fields] and enforce constraints

Gauge-invariant
subspace

Hilbert space

Encoding approach:

Schwinger model: A given matter configuration
and choice of background field completely
determines the gauge degrees of freedom.

Elimination of the gauge fields results in a
pure matter model with long-range
interactions

|deal case: exact gauge invariance by
construction (on all energy scales).

C. Hamer, Z. Weihong, and J. Oitmaa, Phys. Rev. D 56 55 (1997).
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Encoding

Elimination of the gauge fields ——— Pure spin model with long-range interactions
(+ Jordan Wigner transformation)



Encoding

Elimination of the gauge fields ——— Pure spin model with long-range interactions
(+ Jordan Wigner transformation)

The gauge fields don't appear explicitly in the encoded description. Instead, they act in the form of a
non-local interaction.



Encoding

Elimination of the gauge fields ——— Pure spin model with long-range interactions
(+ Jordan Wigner transformation)

The gauge fields don't appear explicitly in the encoded description. Instead, they act in the form of a
non-local interaction.

The required long-range interactions can be realised efficiently in a robust digital scheme
In a trapped ion quantum computer.

Efficient implementation



Two simple transformations:
(1) Fermions —> spins ~ @» =[] ieilon

(2) Elimination of 4, o ﬁn[ei@l

I<n

On

Hamiltonian in terms of spins and electric fields



Transformed Hamiltonian:

A

background field The operators L, represent the electric fields on the links.
They take eigenvalues [, = 0, =1, +2. +3...

Odd lattice sites:



Transformed Hamiltonian:

N—1 N—1 N
H=w) [66, 4 +He]+J Y LZ4+m) (-1)"5;
n=1 n=1 n=1
e~ eT™ vac vac e~ vac vac vac  vac e
0 1 0 0 0 1 _ 1 1 ~1 0
01 09 03 04

A given configuration of spins and choice of background field
completely determines the gauge degrees of freedom.

Odd lattice sites: =~

g ~ f o vac L, =L, 1

n
ox={~e I,=L,,-1 <~ Transformed Gauss law:
n n
: : - . 1
Even lattice sites: / L,— L, 1= 5 [gfb + (_1)"]
~ P ~et L[, =1L, +1

vac L, = L, _1

O =@
1[0

=< =mp
1%



Transformed Hamiltonian:

N-—1 N—1 N
H=w) [66, 4 +Hc]+J Y Li+m) (-1)"5;
n=1 n=1 4 n=1
N—1 1 n 2
+J €0 + 5 672 + (—1)m]}
n=1 m=1
/ T T 1 Az n
€o = 0 Ln—Ln—1—§[0n+(—1) ]
€0 le l/\_JQ fzg i4

A 01 ) 03 04

background field



Elimination of the gauge fields = Pure spin model with long-range interactions

The gauge fields don't appear explicitly in the encoded description. Instead, they act in the
form of a non-local interaction that corresponds to the Coulomb-interaction between the
simulated charged particles.



The Schwinger model as exotic spin model

1
_ —I—/\— /\—l— /\—)
= E , 0; 041 T 0,410,
partlcle antiparticle creation/annihilation
A Z
+J E cwa
/ long - range interaction
+m§ CZO' +J§ 6&62

effectlve particle masses
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The Schwinger model as exotic spin model

~
_ Z e
Hg_w O'O'H_l O'Z_HO' )

partlcle antiparticle creation/annihilation

+ chw&z :

long - range interaction

+ m g cio; +J g Ci0;
1

effective particle masses

= Efficient implementation on an ion-quantum computer

= N spins simulate N matter tields and N-1 gauge fields



Quantum simulation of
1+1-dimensional QED on a lattice

We explore:

e Coherent real-time dynamics of particle-
antiparticle creation

e Entanglement generation during pair creation




Particle number density: v(t) = —

Creation of a particle antiparticle pair:

Schwinger Mechanism

In the ideal case (N=4):

O
o

Particle number density v

vaC vac VvaC VvacC

t t

1 2 3 4

o
N

0 wi

/2

_|_,\_
HS— w g 0, 0,1+

vac vac e e
t t
4

1 2 3

z—l—lo- )
partlcle antiparticle creation/annihilation

+ J ) cijoi0;

long - range interaction

Az ~ Az
+ m g cio; +J g C@O'
()

effective particle masses



Schwinger Mechanism

N
Particle number density: v(t) = % D> A{(=Drop(t) + 1)

n=1
vac vac vac vac vac vac e et
Creation of a particle antiparticle pair: 1 1t ) 1t
1 2 3 4 1 2 3 4

Including discretisation errors (N=4):

O
o

Particle number density v

70 | wt | /2



Schwinger Mechanism

N
Particle number density: v(t) = % > {(=D)rop(t) + 1)

n=1
vac vac vac vac vac vac e et
Creation of a particle antiparticle pair: 1 1t ) 1t
1 2 3 4 1 2 3 4

Experimental data (after postselection):

O
o

Particle number density v

0 | Wt | /2



Schwinger Mechanism

N
Particle number density: v(t) = % D> A{(=Drop(t) + 1)

n=1
vac vac vac vac vac vac e et
Creation of a particle antiparticle pair: 1 1t ) 1t
1 2 3 4 1 2 3 4

Simple error model (uncorrelated dephasing):

© o o o
N W B~ O

O
—

Particle number density v

O
o

0 | wt | /2



Entanglement in the Schwinger mechanism

‘ \/\/\/\/\/ﬁ
wo)y= @

[vacuum)  [¥(t)) t

State tomography:
access to the full density matrix

E,, . logarithmic negativity

evaluated with respect to this bipartition:

vac T

e
t 1
12

)

vac

o
W

Entanglement between the two
halves of the system.

1.4¢

Ol
0

© Experimental data

Entanglement

0o

Wlt 'ITI/_ 2

- Error model
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Next challenges:

Realisation of 2D models

Simulate increasingly complex dynamics

Realisation of non-Abelian theories
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Thank you very much
for your attention!




Variational Quantum Simulation

Controllable
Quantum
System

Mode A: Mode B:

Trotter Simulator Variational Simulator
Time evolutions Ground state preparation
e—iHTt |\IJO>HT

Quench dynamics Equilibrium physics
Real-time dynamics Ground state properties

Combined application, e.q.:
(1) Prepare the true vacuum of the Schwinger mode A
(2) Perform real-time dynamics in mode B






Transformed Hamiltonian:

A

background field The operators L, represent the electric fields on the links.
They take eigenvalues [, = 0, =1, +2. +3...

Odd lattice sites:



Transformed Hamiltonian:

N—1 N—1 N
H=w) [66, 4 +He]+J Y LZ4+m) (-1)"5;
n=1 n=1 n=1
e~ eT™ vac vac e~ vac vac vac  vac e
0 1 0 0 0 1 _ 1 1 ~1 0
01 09 03 04

A given configuration of spins and choice of background field
completely determines the gauge degrees of freedom.

Odd lattice sites: =~

g ~ f o vac L, =L, 1

n
ox={~e I,=L,,-1 <~ Transformed Gauss law:
n n
: : - . 1
Even lattice sites: / L,— L, 1= 5 [gfb + (_1)"]
~ P ~et L[, =1L, +1

vac L, = L, _1

O =@
1[0

=< =mp
1%



Transformed Hamiltonian:

N-—1 N—1 N
H=w) [66, 4 +Hc]+J Y Li+m) (-1)"5;
n=1 n=1 4 n=1
N—1 1 n 2
+J €0 + 5 672 + (—1)m]}
n=1 m=1
/ T T 1 Az n
€o = 0 Ln—Ln—1—§[0n+(—1) ]
€0 le l/\_JQ fzg i4

A 01 ) 03 04

background field



Elimination of the gauge fields = Pure spin model with long-range interactions

The gauge fields don't appear explicitly in the encoded description. Instead, they act in the
form of a non-local interaction that corresponds to the Coulomb-interaction between the
simulated charged particles.



The Schwinger model as exotic spin model

~
_ (6767 + oA
Hg_wg O'O'Z_I_ JZ+10)

partlcle antlpartlcle creation/annihilation

+ JZ%&Z :

long - range interaction

+ m E cio; +J g Ci0;
1

effective particle masses




The Schwinger model as exotic spin model

( )
2 A oA At A
Hg = w E :Z.(O-z' 0,41 1T 0,410 )

particl‘e - antiparticle creation/annihilation

E A AR
/ long - range interaction

+ m g cio; +J g Ci0;
[/ [/

effective particle masses

=N W s




The Schwinger model as exotic spin model

~
_ Z (6767
HS_ w 0, 0,1+t O'Z_HO' )

partlcle antiparticle creation/annihilation

+ JZ%&Z :

/ long - range interaction
+m§ c@a +J§ 5262

effectlve particle masses




The Schwinger model as exotic spin model

~
_ Z (6767
HS_ w 0, 0;1q + JZ+10 )

partlcle antiparticle creation/annihilation

+ JZ%&Z :

long - range interaction

/\Z ~ /\Z
+ m E cio; +J g Ci0;
/,/,

effective particle masses

= Efficient implementation on an ion-quantum computer

= N spins simulate N matter fields and N-1 gauge fields

= Exotic spin interactions can be simulated efficiently:
Digital scheme



Digital quantum simulation

Approximate time evolution by a stroboscopic sequence of gates

The evolution under a desired Hamiltonian is realised on a coarse-grained time scale

H=H,+ H>

U(t) — 6—@'Ht/h _ e—iHAtn/h . .—z'HAtl/h

|

Trotter expansion:

—iHAt/h ~, ,—iH1At/h —iHAt/h 3

first term second term

€

Trotter errors for
non-commuting terms

S. Lloyd, Science 273, 1073 (1996).



Digital quantum simulation

Approximate time evolution by a stroboscopic sequence of gates

The evolution under a desired Hamiltonian is realised on a coarse-grained time scale

US — 6—’5']:]575

n
U _ —1H1it/n —1Hpt/n

/-

Operations that can be performed straightforwardly

t2
Trotter error: Ug — Uy, = o H;, H;| +

1,]
This scheme: Trotter errors do not violate gauge invariance




Our toolbox

lon trap quantum computers:
= Fast and accurate single qubit operations

= Entangling gates: Mglmer-Sagrensen interaction

All-to-all 2-body interaction: Hy = Jy Z 0; 0
i,



Our toolbox

lon trap quantum computers:
= Fast and accurate single qubit operations

= Entangling gates: Mglmer-Sagrensen interaction

All-to-all 2-body interaction: Hy = Jy Z 0; 0
i,

: > | 1 2
: 2
o & v
3 3 4

r X r T r T r T r T r T r X r X r T r T
0105 0109 + 0503 + 0703 0105 + 07103 +0104 + 0503 +050, + 030
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— Time coarse graining

tsim



tsim

Time coarse graining

S: JE :CwAzAz

1<)
long - range interaction

Z At n— N
4+ w 0, 0,1+t 0,,10; )

particle - antiparticle creation/annihilation

+m>» 6] +.J Z GiG7

effective particle masses



Time coarse graining

/\

S: JE :CwAzAz

1<)
long - range interaction

Z At n— st A
+ w o JZ+1 0;110; )
particle - antiparticle creation/annihilation

+m>» 6] +.J Z GiG7

effective particle masses



t Time coarse graining

t HS— JZC’L]AZ z

1<)
long - range interaction

At n— + -
—|-w§ a 0,11 O'Z_HO')

partlole antiparticle creation/annihilation

—|—ch20 +JZ~ 57

effectlve particle masses




T T T T T | .
t Time coarse graining

IA{ZZ I:I:I: I:IZ ~
NZAZ
t Hs = J E ;,g,ijaiaj
long - range interaction

A —

At ~
4+ wzi(ai O;11 T 0;110; )
particle - antiparticle creation/annihilation

~AZ ~ A~z
+ m g c;o; +J E Ci0;
2 2

effective particle masses

-~ N w s
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R. Blatt, & C. Roos, Nat. Phys. 8, 277 (2012).



Qubit

4S1/2

Experiment
E. Martinez, P. Schindler, D. Nigg, A. Erhard, T. Monz, and R. Blatt

3Ds),
(T~18)

Tools for universal digital guantum

simulation are available:
B. Lanyon, et al. Science 334, 57 (2011).

e High fidelity local rotations ‘/

e Entangling gates \/
A

Malmer-Sgrensen interaction

Hy = JOZJfOf




Decoupling of individual ions

fusf I
— (o)

Decoupling (hiding) operation

lons are selectively decoupled from the MS interaction by transferring their population to
off-resonant Zeeman levels:

+5/2
+1/2332=== 3Ds),

12—
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Decoupling of individual ions

fusf I
— (o)

Decoupling (hiding) operation

lons are selectively decoupled from the MS interaction by transferring their population to
off-resonant Zeeman levels:

+5/2
aprrf2 3D,
_3/2 S

-3 2—



Decoupling of individual ions

fusf I
— (o)

Decoupling (hiding) operation

lons are selectively decoupled from the MS interaction by transferring their population to
off-resonant Zeeman levels:

+5/2
aprrf2 3D,
_3/2 S

-3 2—




Decoupling of individual ions

fusf I
— (o)

Decoupling (hiding) operation

lons are selectively decoupled from the MS interaction by transferring their population to
off-resonant Zeeman levels:

+5/2
+3/2222 3D
1yp H2el 5/2

I



Decoupling of individual ions

fusf I
— (o)

Decoupling (hiding) operation

lons are selectively decoupled from the MS interaction by transferring their population to
off-resonant Zeeman levels:

+5/2
+1/2232— 3Dy,




Measurements

== Electron shelving technique (projective measurement in the z-basis)

4P, (T~ 8 ns)

; (T~1s)
r ﬂ

= |maging of the whole ion chain on a CCD camera

N |

vac vac e”

= Change of the measurement basis: full state tomography



n

Creation of a particle antiparticle pair:

1

N
Particle number density: v(t) = % > {(=D)rop(t) + 1)

vaC vac VvacC VvacC

t t

1 2 3 4

Quantum Simulation of pair creation

v =10

vac vac e
)
1 2 3




