

Nuclear charge radius of helium-8

Helium-8 (⁸He) is the most neutron-rich matter that can be synthesized on earth: it consists of two protons and six neutrons, and remains stable for an average of 0.2 seconds. Unlike the regular helium-4 (⁴He), which usually has the two neutrons packed closely with two protons, the additional neutrons in ⁸He form a halo around a compact, ⁴He-like core. Because of its intriguing properties, ⁸He has the potential to reveal new aspects of the fundamental forces among the constituent nucleons. Physicists have recently succeeded in laser trapping and cooling this exotic helium isotope, and have performed precision laser spectroscopy on individual trapped atoms. Based on atomic frequency differences measured along the isotope chain ${}^{4}\text{He} - {}^{6}\text{He} - {}^{8}\text{He}$, the nuclear charge radius of ⁸He has been determined for the first time to be 1.9 fermi (one fermi equals to one millionth of a nanometer). The result shows that the charge radius of ⁸He is smaller than that of ⁶He as illustrated in the figure to the right. This may be understood by noting that the four extra neutrons are more evenly distributed around the ⁴He core than the neutron pair in ⁶He as shown in the figure below. The result is in good agreement with recent predictions of the state-of-the-art nuclear structure theories, and it provides a critical test of the present understanding of these loosely-bound halo nuclei. The ⁶He measurement was first performed at the ATLAS accelerator facility of Argonne, and the ⁸He measurement at GANIL, France. This work was supported by the U.S. Department of Energy, Office of Nuclear Physics.

- Laser Spectroscopic Determination of the ⁶He Nuclear Charge Radius L.-B. Wang et al., Phys. Rev. Lett. 93, 142501 (2004)
- Nuclear Charge Radius of ⁸He
 P. Mueller et al., Phys. Rev. Lett. 99, 252501 (2007)

Figure: Illustration of the nuclear structure of the neutron halo isotopes ⁶He and ⁸He as compared to the stable and tightly bound ⁴He. Being dragged by the halo neutrons, the ⁴He-like core moves around the center of mass inside ⁶He or ⁸He, resulting in a larger charge radius.

More information can be found at http://www.phy.anl.gov/mep/atta/

