E906 Geant4 Simulation for Background Rates

Obiageli Akinbule and Marissa Walker Abilene Christian University

Y-Z and X-Z Views of the Geant4 Simulation

Length of the Magnet

- Two length possibilities: 126" (3.2 m) and 189" (4.8 m)
 Simulations of 2 million protons at 120 GeV
 Simple magnetic field, uniform throughout the magnet
 Comparison of charged particles that hit
 - station one

SHORT MAGNET: Charged Particles

LONG MAGNET: Charged Particles

Comparing station one rates, out of 2 million protons: 126 inches vs. 189 inches						
	All Hits	Muons	Electrons			
126 in.	1493	416	321			
189 in.	117	106	7			

Copper Insert

- 2 feet (0.61 m) length of copper inside of the magnet
- Comparison of simulations with and without the copper
- Both runs using the 189"/4.8m long magnet

LONG MAGNET WITH COPPER INSERT: Charged Particles

Muon and Electron Hits at Station One: Using Long Magnet with no Copper Insert

Muon and Electron Hits at Station One: Using Long Magnet with Copper Insert

Comparing station one rates,
out of 2 million protons:
with vs. without copper

All Hits Muons Electrons

7

4

No Cu 117 106

With Cu 105 100

Neutrons and Borated Polyethylene

Long magnet without copper
Comparison of neutron rates at station one
One run with no borated polyethylene
One run with 6 inch-thick (15 cm) borated polyethylene immediately after the first magnet

NO BORATED POLYETHYLENE

SIX INCHES OF BORATED POLYETHYLENE

3D Field Map

- Includes fringe fields
- Effects of fringe fields on previous results
- Comparison between simple field and new field map
- Results of simulations using fringe field without return yokes

EFFECT OF FRINGE FIELD ON LONG MAGNET STATION ONE RATES

Sta	Station One Rates					
	Muons	Electrons	Pions			
simplified field	106	7	3			
3D field map	880	29	214			

Z Vertex of Charged Particles that Hit Station One

Reasons for Conspicuous Change

- Z momentum of Muons and Pions at the vertex and station one
- Difference between muon angle at the vertex using simplified field and the same angle using the new 3D field map

Z Momentum of Muon at Vertex: Using 3D Field Map

Z Momentum of Muons at Station One: Using 3D Field Map

Z Momentum of Pions at Vertex: Using 3D Field Map

Z Momentum of Pions at Station One: Using 3D Field Map

Difference between Z Momenta of Pions at Vertex and Station One versus Y Momentum at Vertex: Using 3D Field Map

MORE OBSERVATIONS: BENDING ANGLE

Muon Angle at Vertex: Using Simplified Field Map

Muon Angle at Vertex: Using 3D Field Map

Y Momentum of Mu+ and Mu- at Vertex: Using 3D Field Map

Production Vertex Y Momentum of Muons that Hit Station One

INCLUDING RETURN YOKES IN THE SIMULATION

- Tremendously reduces the station one rates of all charged particles!
- This ratifies the importance of the return yokes in the simulation and experiment

All Hits with Return Yokes

Station One Rates

	Muons	Electrons	Pions
Simplified Field Map	106	7	3
3D Field Map	880	29	214
3D Field Map with Return Yokes	206	0	0

CONCLUSION

- Rates in shorter magnet are too high.
- The copper does not make an observable difference in the long magnet.
- Borated polyethylene works, but there is something wrong with the neutrons in our simulation.
- We have a great 3D field map!
- Now we need more specific geometry of return yokes and coils.

Any Questions?

 We would be happy to work with other specific questions that you may have.

 Obiageli Akinbule: ofa05a@acu.edu

 Marissa Walker: mbw05g@acu.edu

...AND THEY LIVED HAPPILY EVER AFTER...

The End.