
E906 Targets

Betsy Beise, U Maryland in collaboration with Wolfgang Lorenzon + Richard Raymond, U Michigan

June 2008 collaboration meeting

E866 liquid target cell drawing exists

Stuff exists (in lab F...)

E906 targets

- same 3 cells (LD2, LH2, empty)
 - 50.8 cm long, interchanged every 30 min (takes 30 sec?)
- C, Ca or Fe, W
 - "approximately 10 mg/cm²"
 - are these new? Is there an insertion mechanism?

• Is there a simulation/generator for the nuclear systems (any need to optimize thickness, choice of (Z,A) any further, etc)?

E906 Cryotargets: path to experiment

- Possible collaborative contribution from U Michigan and U Maryland -- still need to understand scope of work!
 - U Mich: target assembly/construction (Lorenzon + Raymond + ...)
 - U Maryland: controls, safety documentation, etc.
 (Beise+postdoc+student)
 - 1. identify existing parts/drawings (underway)
 - 2. identify funding (??? possible NSF-MRI proposal?)
 - 3. develop path for safety assessment (what bench tests required?) will require substantial local support interaction
 - 4. reassembly, etc.
 - 5. How much hall infrastructure (plumbing/vent, etc.) is required/does any exist yes?
 - 6. Is there a laboratory "standard" for controls system?

Cost estimate \$200K (FNAL, Nov 2006)

Cryogenics:

\$115K

includes 40 W refrigerator ~ \$80K

Instrumentation and Controls:

\$50K

includes pressure/temp transducers, slow controls instrumentation, I/O readout, computer...

Target motion

\$8K

Safety

\$5K

11/14/2006	Eng MW	Tech MW	M&S			
Target Cryogenics						
heat and mass balance documentation review	1	0	\$0.0	review existing documents		
operating procedures	1.5	0	\$0.0	revise existing documents		
commissioning	2	4	\$0.0			
build and test flasks	0.5	6	\$3.0	three stainless flasks, soldered construction, pressure test and leak test		
build and test vacuum vessels	4	6	\$5.0	three vessels, modify design around cryocoolers		
cryocooler interfaces	6	6	\$3.0	modify design around cryocoolers		
purchase and test cryocoolers	1	3	\$80.0	air cooled, 40 watts, performance test		
electric power for cryocoolers	0.2	0	\$1.0			
pneumatic actuated valves	0.1	1	\$7.0	14 solenoid-pneumatic combos.		
solenoid valves	0.1	0.2	\$0.5	6 solenoid valves		
manual valves	0.2	2	\$9.0	46 manual valves		
vacuum pumps	0.4	8	\$6.0	salvage diff pumps, new roughing pumps, overhaul carts		
Instrumentation & Controls			-			
Pressure Instruments	1	2	\$9.0	18 pressure transmitters		
flow Instruments	0.1	0.1	\$1.0	2 flow transmitters		
temperature Instruments	1	1	\$6.0	20 temperature Instruments		
power and current instruments	0.1	0.4	\$3.0	heater power, pump motor current		
Controller	1	0.5	\$22.0	75 I/O count for cryogenics, assumes APACS		
HMI, including PC	1	3	\$10.0			
Instrument air compressor, filter, reverse osmosis	0.1	0.2	\$0.5			
misc terminal blocks, fuses, cabinet, cables	0.1	0.2	\$1.0			
Target motion						
table mechanical	0.5	1	\$0.5	polish quides, design & build support		
table control	0.5	0.5	\$1.5	new motor, driver, encoder, limit switches		
wheel mechanical	0.2	6	\$5.0	still looking for old frame, assume it's lost		
wheel control	0.5	0.5	\$1.5	new motor, driver, encoder		
Towns Date						
Target Safety	100		** *			
Safety report preparation	70	0.5	\$0.0			
ODH analysis	0.5	0	\$2.0			
Safety review	11	0	\$0.0			
Ventilation system	0.2	2	\$2.0			
tent	0.5	1	\$2.0			
				 		
Sum	28.3	55	\$181.5			
Continglency	42.45	82.65				

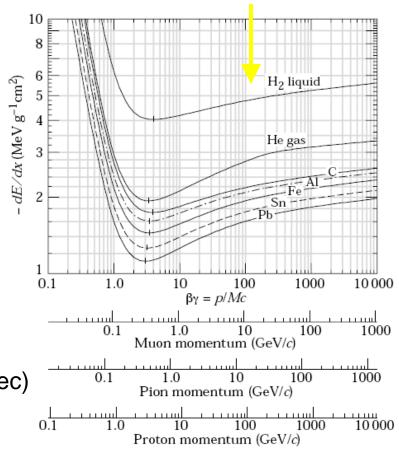
Power Deposition in Targets

 $\beta \gamma \sim 128$

Energy Loss in Hydrogen for 120 GeV protons:

$$\frac{dE}{dx}(H) = 4.5 \text{ g/cm}^2$$

$$\Delta E = (4.5 \text{ MeV} - \text{cm}^2/\text{g})$$


$$\times (0.07 \text{ g/cc}) \times (50 \text{ cm})$$

$$= 15 \text{ MeV}$$

assuming $2x10^{12}$ p/s for 5 s:

peak power deposition = 5 W (for 5 sec)

→ 0.5 W average

w/convection:

$$\Delta T = \frac{\Delta Q}{m \cdot c_p} = \frac{(5 \,\mathrm{W} \times 5 \,\mathrm{s})}{(0.07 \,\mathrm{g/cc} \times 2280 \,\mathrm{cc}) \times (8.8 \,\mathrm{J/g} - \mathrm{K})} = 0.02 \,\mathrm{K} \qquad \frac{\Delta \rho}{\rho} \approx 0.015 \times \Delta T(K)$$

x20 higher if no convection (all heat in 1x1 cm² column of beam)

Target density vs temperature

(from G. Smith's Hall C target training slides http://www.jlab.org/~smithg/target/Hall_C_Cryotarget.html)

$\rho(T, P)$

Hydrogen

T	P	ρ (H2)
(K)	(psig)	(g/cm ³)
18.5	8.22	0.07283
19.0	cc	0.07231
19.5	٠.	0.07176
19.0	7.35	0.07230
cc	8.22	0.07231
cc	9.09	0.07231

Deuterium

T	P	ρ (D2)
(K)	(psig)	(g/cm ³)
21.5	8.3	0.16868
22.0	cc	0.16743
22.5	٠.	0.16613
22.0	7.3	0.16741
٠.	8.3	0.16743
٠.	9.3	0.16744

10/17/2007 Spring-03 G. Smith: 48