

E906 Trigger

R. Gilman, Rutgers University

Fermilab E906 Collaboration Meeting 20 June 2008

Apologies

GERS

 My apologies for not making the meeting, just out of organizing 4 days of meetings, and need the day to get ready for next week's trip

Overview

GERS

- This talk is a small update on what was presented during E906 meeting in Dec 2006
 - Discussion largely unchanged, but solution is now cheaper...
- Based on discussions with
 - Reimer, Gagliardi et al NIM paper on E866 trigger, and with
 - Ed Bartz (Rutgers designer, worked on LHC
 FPGA projects for our high-energy group

Scintillator Tracks

GERS

- 8 hodoscope planes, each with 2 rows of 16 paddles, for a total of 256 signals
- Full specification requires detailed Monte Carlo (not done!), but scope of problem is about as follows:
 - Track in either X or Y would involve about 32 x $6 \times 6 \times 6 = 6912$ possibilities in each direction
 - Some of these do not point back to target
 - Similar number of possibilities for missing hit "efficiency tracks"

Scintillator Triggers

- Triggers involve correlating x and y to form tracks
 - Primary trigger: two tracks, μ^{+} and μ^{-} , high p_{τ}
 - Various secondary triggers: two same sign µ's, one track, cosmic track, noise

E866 Trigger

GERS

- Trigger logic largely implemented using numerous LeCroy programmable units based on Xilinx Field Programmable Gate Array (FPGA) chip
- Identify in each direction quadrant of track in 1st plane, side of spectrometer, position in 4th plane, sign (for bend direction)
- Technology modern as of ~15 years ago; now we can do better

Modern FPGAs

- FPGA chip technology has improved as of 12/2006, for example
 - Xilinx Virtex5 family has up to 500 Mhz speed,
 ~1000 input/outputs, few hundred thousand
 logic elements (6-input look-up tables)
- After a few hours of discussion with Ed Bartz, he expects we can do the entire trigger logic on a single chip

E906 Collaboration Meeting, June 2008

Interface with CODA DAQ

• Plan: FPGA system would

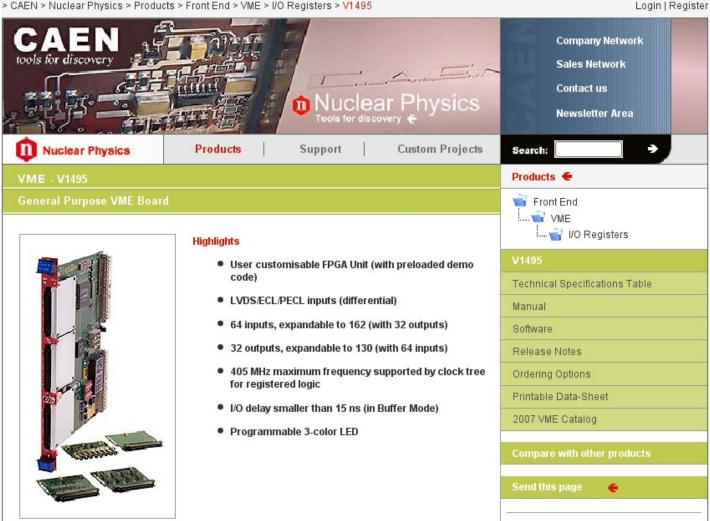
- have input from all 256 paddles
- generate several trigger types
- send the several trigger bits to CODA trigger supervisor for prescaling, etc, and to scaler for counting

Cost and Schedule as of 12/2006

Design	\$50,000.00	Sep 2007	6 months
Prototype	\$26,000.00	Mar 2008	6 months
Test	\$13,000.00	Sep 2008	2 months
Fabricate	\$14,000.00	Feb 2009	1 month
Install	-	Apr 2009	1 month

- Estimate for custom system as of 12/2006
- But 1.5 years have passed, technology has advanced, prices have dropped
- Standard system now allows lower price and technological certainty

R Gilman, Rutgers Physics & Astronomy



E906 Collaboration Meeting, June 2008

CAEN V1495 FPGA

TGERS

> CAEN > Nuclear Physics > Products > Front End > VME > I/O Registers > V1495

CAEN V1495 FPGA

- VME 6U board
- 64 162 inputs
- 32 outputs

TGERS

- 405 Mhz max frequency
- I/O delay < 15 ns (in Buffer Mode)
- Cost ~\$3k for base unit

Trigger Cost

GERS

- 3 CAEN V1495 FPGAs
 - Natural to have X, Y, and X+Y, but not necessary
- MiniVME crate
- Likely need to build conversion boards to convert format of scintillator discriminator / mean timer output to FPGA input
- About \$20 25k
- About 1 year of time for MC's and trigger programming development

Where do we get the resources?

• About \$20 - 25k

GERS

- Prof. TH Chang, Taiwan, will buy 1-2 FPGA boards as part of new grant
- Rutgers can afford rest of system from ongoing NSF grant
- 1 FTE time
 - Student from Taiwan will come to Rutgers toward end of year to work on system
 - RU should have part time from Prof. Gilman and from one of postdocs + students

GERS

- Project appears very achievable, on a time scale of ~1 year and cost (~25 k\$) mentioned
 - A fraction of the cost that we estimated 1.5 years ago

