Measuring F_{2}^{n} at the EIC

Alberto Accardi

Nuclear Chromo-Dynamics with an EIC Argonne National Laboratory *April 7 - 9, 2010*

Gratefully acknowledging help from C.Keppel, R.Ent

$F_{2^{p}} - F_{2^{n}}$ yields non-singlet PDF

- Nucleon made of singlet (gluons, sea) and non-singlet (valence) distributions
- Assuming a charge-symmetric sea, p-n isolates the non-singlet (at LO)
- Q² evolution for non-singlet is independent of gluons
- Direct handle on nucleon quark structure
- Needed to pin down singlet, hence gluons (complementary to F_L)
- Provides determination of α_s free of g(x) shape (a problem in F_2^p analyses)

Non perturbative nucleon structure at large x

• F_2^n/F_2^p (d/u) sensitive to different models

$$F_{2}^{p}(x) \underset{x \to 1}{\approx} x \left(\frac{4}{9} u(x) + \frac{1}{9} d(x) \right)$$
$$F_{2}^{n}(x) \underset{x \to 1}{\approx} x \left(\frac{4}{9} d(x) + \frac{1}{9} u(x) \right)$$

$$\frac{F_2^n}{F_2^p} \approx \frac{1+4d/u}{4+d/u}$$

Nucleon Model	F_2^n/F_2^p	d/u
SU(6)	2/3	1/2
Valence Quark	1/4	0
pQCD	3/7	1/5

E.g.,

Isgur, PRD59 (1999)

Brodsky et al., NPB441 (1995)

Melnitchouk, Thomas, PLB377 (1996)

accardi@jlab.org

But, there is no free neutron target!

Neutron derived from Deuterium target by "subtracting" proton

Large uncertainty in unfolding nuclear effects:
Fermi motion & binding
off-shell effects,
coherent scattering,
final state interactions,
nucleon modification ("EMC"effect)

accardi@jlab.org

But, there is no free neutron target!

accardi@jlab.org

No help available from (or for) global fits, either

Large uncertainties in quark and gluon PDF at x > 0.4 - e.g., CTEQ6.1

PDF errors

- propagation of exp. errors into the fit
- statistical interpretation
- reduced by enlarging the data set
- Theoretical errors
 - often poorly known
 - difficult to quantify
 - 🔶 can be dominant

[Accardi et al, PRD 81, 034016 (2010)]

• Relax W, Q cuts to allow for expanded DIS data set :

 $W^2 > 3 \text{ GeV}^2$, $Q^2 > 1.69 \text{ GeV}^2$

- Consider
 - target mass effects
 - higher-twist contribution
 - nuclear corrections

Green: BCDMS Black: NMC Blue: SLAC Red: JLab

[Accardi et al, PRD 81, 034016 (2010)]

• Relax W, Q cuts to allow for expanded DIS data set :

 $W^2 > 3 \text{ GeV}^2$, $Q^2 > 1.69 \text{ GeV}^2$

- Consider
 - target mass effects
 - higher-twist contribution
 - nuclear corrections
- Reduced "exp." uncertainty at large x (ref ~ CTEQ6.1)

[Accardi et al, PRD 81, 034016 (2010)]

• Relax W, Q cuts to allow for expanded DIS data set :

 $W^2 > 3 \text{ GeV}^2$, $Q^2 > 1.69 \text{ GeV}^2$

- Consider
 - target mass effects
 - higher-twist contribution
 - nuclear corrections
- Reduced "exp." uncertainty at large x (ref ~ CTEQ6.1)
- Large theory uncertainty due to nuclear corrections

nucl = nuclear smearing in Weak Binding Approximation (+ off shell corrections)
dens = density-scaled EMC effect, extrapolated to deuterium

free = deuterium as sum of proton and neutron structure functions

accardi@jlab.org

[Accardi et al, PRD 81, 034016 (2010)]

 Relax W, Q cuts to allow for 	2 [<u>רייין יא</u> יין
expanded DIS data set :	$Q^2 = 10 GeV^2$	(ь)

- "Further progress in the determination of the behavior of the large-x PDFs and the d/u ratio requires either a better understanding of the nuclear corrections or the use of data obtained using free nucleons in the initial state." • Re at

 Large theory uncertainty due to nuclear corrections

0.20.608 0.4

nucl = nuclear smearing in Weak Binding Approximation (+ off shell corrections)

dens = density-scaled EMC effect, extrapolated to deuterium

free = deuterium as sum of proton and neutron structure functions

accardi@jlab.org

The spectator tagging approach: An effective neutron target from Deuterium

before collision

- from a neutron target!

Existing fixed-target experiments:

- **E-94-102**: PRC73 (2006)
- BONUS: paper in progress

accardi@jlab.org

Requirements 1 - "VIPs" (Very Important Protons)

Requirements 2 - Backwards Protons

Backward angle compared to γ^* to minimize Finale State Interactions

Example: BONUS cuts

60 MeV < p_s < 100 MeV θ_s > 110°

Proton Tagging

Spectator proton tagging:

- Δ (bend) 30 GeV vs. 29.9 GeV = 1.3 mr
- If roman pots after 4 m

5 mm @ $p_s = 100 \text{ MeV/c}$ 15 mm @ $p_s = 300 \text{ MeV/c}$

Roman pots (photos at CDF (top) and LHC (bottom), ...) ~ 1 mm from beam achieve proton detection with < 100μ resolution

→ Proton tagging concept looks doable, even if the horizontal crossing angle was reduced by a factor of two or three.

Neutron Tagging

- Neutron tagging in Zero Degree Calorimeter
 - Bound vs. free proton structure functions
 - Extensive program of DVCS on tagged protons and neutron

[C.Hyde, Rutgers'10]

Neutron Tagging

The RHIC Zero Degree Colorimeters arXiv:nucl-ex/0008005v1

- EIC@JLab case: 40 Tm bend magnet at 20 meters from IP → very comparable to above RHIC case!
- 40 Tm bends 60 GeV protons with 2 times 100 mr
- \rightarrow deflection @ a distance of about 4 meters = 80 cm (protons)
- \rightarrow no problem to insert Zero Degree Calorimeter in this design

Zero Degree Calorimeter properties:

• Example: for 30 GeV neutrons get about 25% energy resolution (large constant term due to unequal response to electrons and photons relative to hadrons)

 \rightarrow Should be studied more whether this is sufficient

- Timing resolution ~ 200 ps
- Very radiation hard (as measured at reactor)

Projected Results I - F₂ Phase Space

MEIC will probe lower x in the shadowing region, and higher Q^2 at large x.

Projected Results II - Structure functions

Disclaimer: The following binning and rates are PRELIMINARY

R.Ent and I are working on more detailed estimates including the small-x region...

...and would enjoy your help if you are interested!

Projected Results IIa - F_2^p with CTEQ6X PDFs

- $E_e = 4 \text{ GeV}, E_p = 60 \text{ GeV}$ (s = 1000)
 - larger s (~4000 MeRHIC, or ~2500 MEIC) would cost luminosity
- 0.004 < y < 0.8
- Luminosity ~ 3×10^{34}
- 1 year of running (26 weeks) at 50% efficiency, or 230 fb⁻¹
- Somewhat smaller Q² reach and large luminosity is better choice at large x, $\sigma \sim (1-x)^3$

accardi@jlab.org

Projected Results IIb - F_2^d

- $E_{e} = 8 \text{ GeV}, E_{N} = 30 \text{ GeV}$ (s = 1000)
- Luminosity ~ 3.5×10^{33} (scales with synchrotron limit)
- Smaller neutron str. fn. + reduced luminosity = factor of 10 loss in rate.
- One year of running (26 wk) at 50% efficiency, or **35 fb**⁻¹

accardi@jlab.org

Projected Results IIb - F_2^d

- $E_{e} = 8 \text{ GeV}, E_{N} = 30 \text{ GeV}$ (s = 1000)
- Luminosity ~ 3.5×10^{33} (scales with synchrotron limit)
- Smaller neutron str. fn. + reduced luminosity = factor of 10 loss in rate.
- One year of running (26 wk) at 50% efficiency, or **35 fb**⁻¹

Can tag spectator proton, *measure neutron*, concurrently

only stat. errors on projected results

accardi@jlab.org

Projected Results IIIa - F₂^p Relative Uncertainty

Solid lines are statistical errors, dotted lines are stat+syst in quadrature

For MeRHIC the luminosity is probably down by a factor of ~10, so these error bars will go up ~50%

Huge improvement in Q^2 coverage and uncertainty

Will, for instance, greatly aid global pdf fitting efforts

Projected Results IIIa - F₂^d Relative Uncertainty

Even with a factor 10 less statistics for the deuteron the improvement compared to NMC is impressive

EIC will have excellent kinematics to measure n/p at large x!

And, there's more physics to do as well.....

Projected Results IV - impact on global fits

Sensible reduction in PDF error, likely larger than shown if energy scan is performed

Other physics to do, with and without tagging

Diffraction on a neutron

Higher-Z tagging

⁴He(e,e'³He)X or ⁴He(e,e'³He)X

 \Rightarrow bound p and n \Rightarrow origin of EMC effect Parity Violating DIS

 $\vec{e}_L(\vec{e}_R) p \longrightarrow e X$

L/R electron asymmetry $\Rightarrow \gamma/Z$ interference $\propto d/u$

³He - ³H mirror nuclei

 $\frac{{}^{3}H}{{}^{3}He} \approx \frac{n}{p} \frac{2+p/n}{2+n/p}$

nuclear corrections cancel in ratio

And...

Pion structure function, nuclear shadowing in deuterium, charged-current cross sections, ...

accardi@jlab.org

Conclusions and Outlook

• Spectator tagging will open up an exciting physics program

- Detector design angular & momentum resolution
- Rate estimates needed

 \mapsto ongoing: see S.White's talk

- p vs. n tagging:
 - "effective" neutron target
 - control nuclear effects on an "effective" proton
- Tagging with ⁴He targets ???
 - EMC effect

• Bread and butter: untagged DIS

- \circ Detailed rates: F_2 and F_L , p and D
- Impact on global fits
 - ✓ large-x
 - \checkmark small-x and saturation

$F_2^p - F_2^n$ may help determine α_s

The strong coupling constant is the least well measured fundamental constant

Particle Data Group, 2007

Coupling Constant or Mass	Value	Relative Experimental Error (ppb x 10 ⁻⁹)
Fine structure constant α	1/137.035999679(94)	3.7 x 10 ⁻⁹
Fermi constant G _F	1.16639(1) GeV ⁻²	8.6 x 10 ⁻⁶
Z boson mass	91.1876(21) GeV	2.3 x 10 ⁻⁵
W boson mass	80.398(25) GeV	4.8 x 10 ⁻⁴
Gravitational constant G _N	6.67428(67) x 10 ⁻¹¹ m ³ kg ⁻¹ s ⁻²	1.5 x 10 ⁻³
Strong coupling constant α_{S}	0.1176(20)	1.7 x 10 ⁻²

Extracting Υ_s from DIS (HERA, BCDMS, NMC,....):

- Υ_s very small for BCDMS, but NMC requires higher twist correction to minimize dependence of Υ_s on minimum Q² used
- Want high x region at moderate Q², wide range of x, Q² to test lnQ² evolution
- Evolution of $F_2^{p} F_2^{n}$ is independent of the gluon distribution, provides determination of Υ_s free of xg shape (a problem in F_2^{p} analyses)

F_2^n/F_2^p fundamental to understanding proton structure

Proton Wavefunction (Spin and Flavor Symmetric)

$$\left| \begin{array}{c} p \uparrow \end{array} \right\rangle = \frac{1}{\sqrt{2}} \left| u \uparrow (ud)_{S=0} \right\rangle + \frac{1}{\sqrt{18}} \left| u \uparrow (ud)_{S=1} \right\rangle - \frac{1}{3} \left| u \downarrow (ud)_{S=1} \right\rangle \\ - \frac{1}{3} \left| d \uparrow (uu)_{S=1} \right\rangle - \frac{\sqrt{2}}{3} \left| d \downarrow (uu)_{S=1} \right\rangle \right\}$$

Nucleon Model	F ₂ ⁿ / F ₂ ^p	d/u
SU(6)	2/3	1/2
Valence Quark	1/4	0
pQCD	3/7	1/5

Predictions for d/u at large x_{Bi}

Proton Wavefunction (Spin and Flavor Symmetric)

$$\left| \begin{array}{c} p \uparrow \right\rangle = \frac{1}{\sqrt{2}} \left| u \uparrow (ud)_{S=0} \right\rangle + \frac{1}{\sqrt{18}} \left| u \uparrow (ud)_{S=1} \right\rangle - \frac{1}{3} \left| u \downarrow (ud)_{S=1} \right\rangle \\ - \frac{1}{3} \left| d \uparrow (uu)_{S=1} \right\rangle - \frac{\sqrt{2}}{3} \left| d \downarrow (uu)_{S=1} \right\rangle \end{array}$$

Nucleon Model	F_2^n/F_2^p	d/u
SU(6)	2/3	1/2
Valence Quark	1/4	0
pQCD	3/7	1/5

u, d same shape u = 2d

SU(6) spin-flavor symmetry:

The mass difference between N and ∆ implies symmetry breaking

Predictions for d/u at large x_{B_i}

Proton Wavefunction (Spin and Flavor Symmetric)

$$\left| \begin{array}{c} p \uparrow \right\rangle = \frac{1}{\sqrt{2}} \left| u \uparrow (ud)_{S=0} \right\rangle + \frac{1}{\sqrt{18}} \left| u \uparrow (ud)_{S=1} \right\rangle - \frac{1}{3} \left| u \downarrow (ud)_{S=1} \right\rangle \\ - \frac{1}{3} \left| d \uparrow (uu)_{S=1} \right\rangle - \frac{\sqrt{2}}{3} \left| d \downarrow (uu)_{S=1} \right\rangle \end{array}$$

Nucleon Model	F_2^n/F_2^p	d/u
SU(6)	2/3	1/2
Valence Quark	1/4	0
pQCD	3/7	1/5

SU(6) symmetry broken - scalar valence diquark, u dominance

S=0 diquark dominance

-d/u=(0)/(1/2)=0

-Hyperfine-perturbed quark model (Isgur *at al*.) with one-gluonexchange; MIT bag model with gluon exchange (Close & Thomas); Phenomenological quark-diquark (Close) and Regge (Carlitz) arguments

Predictions for d/u at large x_{B_i}

Proton Wavefunction (Spin and Flavor Symmetric)

$$\left| p \uparrow \right\rangle = \frac{1}{\sqrt{2}} \left| u \uparrow (ud)_{S=0} \right\rangle + \frac{1}{\sqrt{18}} \left| u \uparrow (ud)_{S=1} \right\rangle + \frac{1}{3} \left| u \downarrow (ud)_{S=1} \right\rangle$$

$$\frac{1}{3} \left| d \uparrow (uu)_{S=1} \right\rangle + \frac{\sqrt{2}}{3} \left| d \downarrow (uu)_{S=1} \right\rangle$$
Succeed Model
$$\frac{F_{2}^{n}/F_{2}^{p}}{SU(6)} = \frac{2/3}{1/2} \frac{1}{1/2}$$

$$\frac{S_{z} = 0, \text{ di-quark dominance, spin projection is zero} - d/u = (1/9)/(1/2 + 1/18) = 1/5 - pQCD \text{ with helicity conservation (Farrar and Jackson); quark counting rules (Brodsky et al.)}$$

[There are even more predictions...]