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@ Emergence of the
concepts of “nuclear
physics” (baryons and
mesons) out of QCD
(quarks and gluons)
remains elusive

@ Explore the limits of the

shell model description of
nuclei

@ Use of removal reactions

Fig. from Jefferson Lab



@ Look for phenomena predicted in QCD that introduce deviations from
traditional nuclear physics observations

@ the nuclear transparency as a function of a tunable scale parameter (t or
@?) is a good quantity to study the crossover between the two regimes

Nuclear transparency:
effect of nuclear attenuations on escaping hadrons

(A 02) cross section on a target nucleus
’ A X cross section on a free nucleon

@ Interpretation of the transparency experiments requires the availability of

reliable and advanced traditional nuclear-physics calculations to compare
the data with



* To interpret the data from experiments, comparison to
results from up-to-date nuclear models is necessary to
identify deviations originating from QCD effects

* Semi-classical models are available

* Develop a relativistic and quantum mechanical model



* To interpret the data from experiments, comparison to
results from up-to-date nuclear models is necessary to
identify deviations originating from QCD effects

* Semi-classical models are available

* Develop a relativistic and quantum mechanical model

Ingredients

@ Relativistic wave functions for beam, target and residual
nucleus, outgoing particles

@ Impulse approximation: incoming particle (leptonic or
hadronic) interacts with one nucleon

@ Describe the final state interactions of the ejected particles
with Glauber scattering theory
NPA A728 (2003) 226

@ The possibility to use FSI based on an optical potential at
low ejectile momenta (ROMEA)




Uses the eikonal approximation,
originating from optics: @oy(7) =
O pin(7) = (1 = (7)) bin(7)
Works when the wavelength of the
particle is a lot smaller than the range
of the scattering potential — OK for
the performed experiments!

Particles scatter over small angles and
follow a linear trajectory

Second order eikonal corrections have
been computed — small




@ Profile function can be
related to the scattering
amplitude




@ Profile function can be
related to the scattering

. 2 amplitude
o OO (1 —ieny) b? P
Mn(b) = —— —exp| — B @ Three
Anfrn 2Brn energy-dependent
parameters

total cross section
slope parameter
real to imaginary
ratio




@ Profile function can be
related to the scattering
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@ Profile function can be
related to the scattering

O.to;[v(-l — ieqn) B amplitude
I T
I_ﬂ,\,(b) = W&Xp —2/5 > @ Three
N N energy-dependent
parameters
I total cross section
g slope parameter
S real to imaginary
N ratio

2
By

@ Fit parametersto N — N
and 7t — N scattering
data

@ range v2f3 is of the
! P, [Geviel 10 order 0.75 fm — short

range )
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Multiple scattering

@ [rozen approximation is
adopted

@ Phase-shift additivity

6% =T, (1 - ri(Bi))




Multiple scattering
@ [rozen approximation is
adopted
-9 @ Phase-shift additivity
&% =T, (1 - ri(Bi))
@ Profile functions are weighted
with the Dirac wave function

@ Only nucleons in forward path
contribute

9(B.2)= [] [1—Jd?’|¢am ™| [e (Z’—Z)F(B'—B)]]

QAo

B, z — point of creation



@ In standard Glauber: effect of intranuclear attenuations is computed as if
the density remains unaffected by the presence of a nucleon at 7 = (b, z)

@ v/2f3 ~ 0.75fm — attenuations will be mainly affected by the short-range
structure of the transverse density in the residual nucleus

@ Mean field does not contain repulsive short-range behavior of the N — N
force

@ Introduce correlated two-body density

ol 7,1 = 2 el Ay (7)ol (7)o (7~ 71)

@ y(7) ensures normalization



looks like for this hadron?

A nucleon or pion is created in the center of “He: how does the nuclear density

“He in IPM




A nucleon or pion is created in the center of “He: how does the nuclear density
looks like for this hadron?

“He in IPM ) “He with SRC J

D Q>
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o(2) —a‘°t{[ + <an> (1 - i) Q(Ih—z)] +0(z— lh)}i: norN. J

@ Replace the total cross section
with an effective one

@ Parameters are based on
theoretical grounds but values
are educated guesses




o°(2) = tot{|:h+<”;¢(1_i)9(/h—z)i|+9(z—lh)}i:rcorN.

@ Replace the total cross section
with an effective one

@ Parameters are based on
theoretical grounds but values
are educated guesses

Effective cross section for H=2 GeV?

— pion p,=2.5GeV

- - - nucleon p,=2.5 GeV
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distance from creation z (fm)
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o°(2) = tot{|:h+<”;¢(1_i)9(/h—z)i|+9(z—/,,)}i:7‘c0rN.

@ Replace the total cross section
with an effective one

@ Parameters are based on
theoretical grounds but values
are educated guesses

@ Pion cross section is more
strongly reduced and formation
length is longer

Effective cross section for H=2 GeV?

— pion p,=2.5GeV

- - - nucleon p,=2.5 GeV

0 o5 1 15

distance from creation z (fm)

N



leptons or hadrons, outgoing nucleons or mesons, ...

RMSGA can be applied to a variety of reactions, with incoming

J




QC
‘?u.- A 4 @ Calculations tend to
o 1 underestimate the
o} measured proton
) ' ’ Sory transparencies
& . @ In the region of overlap:
B o5 [ paee S ¥ RMSGA and RDWIA
£ predictions are not
L ’ e dramatically different !!
@ Data from MIT, JLAB and
05 o R , ] SLAC
------- A @ CT effects are very small
0 3 : " for @® < 10 GeV?
Q[ GeVic P

P. Lava et al. PLB595 (2004), 177-186
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@® Semiclassical theory:



Transparency

Cross section (mb)

o
F

1
Proton momentum (GeV/c)

@ Pion transparency is larger than
nucleon one

@ Low energy behavior can be attributed
to nucleon — related to local minimum
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@ Pion transparency is larger than

N PR . nucleon one
N L) o
065k o * - @ Low energy behavior can be attributed
O O . . .
O * to nucleon — related to local minimum
\ , - _tot
0.6)3 04 0.6 0.8 N oy
11l [GeV?] .
0.75 @ How reliable are the transparency
9;‘.,,,.=90° -
calculations? [robustness]
L - | . .
4 . - . . @ Comparison with ROMEA model
&~ ()

. . . (based on nucleon-nucleus scattering)
0.65F
at very low momenta

o . - @ Difference about 5% and becomes
i [Gev?] smaller with rising energy

RMSGA B

ROMEA o
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A(e, &' ") data from JLab, B. Clasie et al., PRL99 (2007) 242502

Dashed lines from semi-classical calc. by A. Larson et al., PRC79 (2006).018201 -, = =
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@ Parametrize T = A*~!

@ Clear @® dependence,
deviates from expected
value

@ Models in good agreement
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Afe,e'm): QF =26.5 GeV?, py =30 GeV
3 T T T T T
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@ very forward angles
@ small energy loss

@ same observations for
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Ale,e'm): QF =26.5 GeV?, p, =250 GeV
1.0 T T T T

¢, $=0°
¢, ¢-180° []
“ca, $=0°
“ca, p=180°

@ very forward angles
@ small energy loss

@ same observations for

A(e, €'p) and keep
X~
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Parameterization of the CT effects compatible with pion production results!
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Knockout of a correlated pair

@ One-step: beam interacts
with one nucleon of the
pair, the other nucleon is
also ejected

@ Two nucleons are
assumed to reside in a
relative S-state (ry, ~ 0)




Knockout of a correlated pair
@ One-step: beam interacts
with one nucleon of the
pair, the other nucleon is
also ejected

@ Two nucleons are
assumed to reside in a
relative S-state (ry, ~ 0)

@ Cross section is
unfactorized

@ Calculations were done
factorized to save
computing time




Hard rescattering

@ Two-step: beam interacts
with a nucleon, nucleon
then hits a second one

@ Propagator taken on the
free nucleon mass shell




Hard rescattering
@ Two-step: beam interacts
with a nucleon, nucleon
then hits a second one

@ Propagator taken on the
free nucleon mass shell

@ Cross section and
calculations unfactorized

@ Propagator introduces
extra degrees of freedom,
a lot of nested integrations




Corr. pair knockout

Transparency

GI+SRC+CT 12C
GI+SRC
GI+CT

Glauber

Transparency
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@ Same dependence on the hard

scale as the pion transparencies

@ Low absolute values! — probes

high density regions of the nucleus
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Hard rescatt. on He

S
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@ Same dependence on the hard
scale as the pion transparencies

Transparency
S
3
T

@ Low absolute values! — probes

071 high density regions of the nucleus

oesk @ HRM transparencies are a little bit
lower

06 | . . @ FSI of the propagator lowers the

Il ?GeVZ] transparency by 5%

Glauber+CT  Glauber
Dashed: without FSI for propagator
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--- SOROMEA
— ROMEA
02 L

0.2 03 04 05 06 0708091
c_f (GeVAic?) )
Second-order eikonal corrections

to transparencies are very small !!

@ One can compute so-called
second-order eikonal corrections

@ SOROMEA: Second Order
Relativistic Optical Model Eikonal
Approximation

@ Unfactorized: not an issue in
transparency calculations!

B. Van Overmeire, J. Ryckebusch, PLB644,

304-310 (2007)



p,, (MeVic)

@ One can compute so-called
second-order eikonal corrections

@ SOROMEA: Second Order
Relativistic Optical Model Eikonal
Approximation

@ Unfactorized: observables like
“left-right” asymmetries can be

computed
B. Van Overmeire, J. Ryckebusch, PLB644,
304-310 (2007)
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A “flexible” eikonal framework to model the propagation of
fast nucleons and pions through the nuclear medium

@ Mean-field approach: can be appliedto A > 4

@ Can accommodate relativity (dynamics and kinematics).

@ Can be used in combination with both optical potentials
(pA) and Glauber Approach (pN).

@ Glauber approach computes full (A—1)
multiple-scattering series and has no free parameters

@ Provides common framework to describe a variety of
nuclear reactions with electroweak and hadronic probes.

@ Effect of central short-range correlations and color
transparency can be implemented
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@ Good agreement with non-relativistic and optical
potential calculations

@ CT and SRC can be clearly separated, due to different
hard scale dependence

@ Pion electroproduction data in agreement with CT
calculations

@ EIC: recoil nucleus detection feasible?

@ Fair results for A(p,2p)

@ Double nucleon knockout probes high density regions
@ Second-order eikonal corrections are small
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