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Isomers are common
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Practical limit

Atomic Mass 
Evaluation 2012
Chinese Physics C 36 (2012) 
1287-1602, 1603-2014. 
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* Thanks to F. Kondev for list of isomers
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 Nuclear isomers can be indicative of 
unusual/unexpected nuclear structure 
[Dracoulis, Phys. Scr. T152 014015 (2003)]

 May play an important role in nuclear 
astrophysics reactions
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Isomers are common, so what ...
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=

Case study: probing the single-
particle character of the 13/2+ 
state in 19F

Based on 18mF(d,p) exp done at 
ANL (Oct/2016 and Nov/2015)

 Why transfer reactions on isomer beams?
– Structure: we can probe states that are otherwise 

inaccessible from reactions with g.s. 
– Astro: measure reaction rates for alternative routes 

important in stellar nucleosynthesis 
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Case study: probing the single-particle character of the 
13/2+ state in 19F

dasago@anl.gov

 In 19F, we can probe the single-particle character of the proposed 
terminating state of the ground-state rotational band, the 13/2+ state

 How? By making a high-spin isomer beam and transferring a 
neutron1,2

j=5/2  m=5/2

m=3/2

m=1/2

18F 
5+ isomer

19F 
13/2+

Direct 
transfer

(Eexc = 1.12 MeV, T1/2 = 162(7) ns) 1) Transfer on low-spin isomer done before in 16N(d,p) 
HELIOS exp.  “by accident” (GS=2-, Iso=0-).  Reactions 
with isomer were regarded as contamination.
2) Roberts and Becchetti, have used 18mF beams since 1990! 
Although not for transfer studies
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Which states can be populated?
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13/2+

Known states in 19F
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Experiment at the HELIcal Orbit Spectrometer 
(HELIOS)

 Beam production:
– 12C(17O,18F)11B (done before at ND, NSCL) 

• Highest beam intensity: ~104 pps/pnA
[Roberts PRC 65, 044605 (2002)]

• Iso/g.s. ratio (at production target): ~70%
– 2H(17O,18F)n (present experiment)

• 18F beam intensity: ~7-8x103 pps/pnA
• Purity ~30%
• Iso/g.s. ratio (at production target): ~55%

dasago@anl.gov

Target (CD2)

Light ejectile (e.g. p) Heavy recoils (e.g. 19F)

Beam 

(18F at 14 MeV/u)

Array of Si 
detectors

Ionization chamber
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Fit using known states in 19F (fixed E
x
 and FWHM, 12 states in E

x
<6 MeV)

13/2+ state from reactions on isomer

3/2+ state from reactions on ground state
Relative angular

 distributions  (L=2)

Apparent excitation energy 
1.1-MeV shift for reactions with isomer

18F(d,p)19F experiment: results

Resolution ~ 330 keV (FWHM)
Shaded region represents the 
variation of DWBA calculations 
with different optical-model 
parameters and the solid lines is 
the weighted average distribution
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18F(d,p)19F experiment: results
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(relative) Spectroscopic factors

Preliminary, uncertainties to be determined

a Present. Based upon calculated ratio of 18F isomer to ground state and 
   magnitude of spec. factor of the 3/2+ state from reanalysis of Kozub's data
b Kozub et al.
c S.M. calculation using PSD interaction (12C core)
d S.M. calculation using USDB interaction (no core excitations)
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Conclusions from 18F(d,p) experiment 
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 We have observed neutron-transfer reactions on the short-lived 5+ 
isomeric state of 18F, thereby populating high-spin states in 19F that are 
otherwise inaccessible from (d,p) reactions on the 18F ground state

 We have extracted a relative spectroscopic factor for the proposed band-
terminating 13/2+ in 19F  that is 2 times larger than the one for the 3/2+ 
state (a rel. pure single-particle state), in agreement with SM calc.

 The large value of the 13/2+ spec. factor is further confirmation that the 
angular momentum of a band-terminating state is generated from 
the alignment of the spins of the valence nucleons with negligible 
contribution from collective effects

 From SM calc. the 11/2+ state seems to be a sensitive probe for core-
excitations in 19F (on-going data analysis)

 Paper in preparation
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Future studies (at ANL, ReA, RCNP)

dasago@anl.gov
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Other high-spin isomers (similar to 18F)

 
52Fe

    Jπ   T
1/2
   E

exc
[MeV]

Iso 12+ 46 s   6.96
GS   0+  8 h

=

 
42Sc

    Jπ   T
1/2
   E

exc
[MeV]

Iso 7+ 62 s   0.62
GS  0+ 0.7 s

AIRIS beams18F (DSG et al.)

    Jπ   T
1/2
   E

exc
[MeV]

Iso 5+ 160 ns   1.12
GS  1+ 110 min

dasago@anl.gov

34Cl (Hoffman et al.)

    Jπ   T
1/2
   E

exc
[MeV]

Iso 3+ 32 min   0.15
GS  0+ 1.5 s

 
60Mn

    Jπ   T
1/2
   E

exc
[MeV]

Iso 4+  1.8 s   0.27
GS  1+  0.3 s

* Include ReA beams
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Nuc. Astro. example: 26Al
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26Al (nuc. astro.)
    Jπ   T

1/2
   E

exc
[MeV]

Iso 0+  6.3 s  0.23
GS  5+ 7E+5 y 

Intensity: 2.5x10^5 pps
 Isomer cont.: 60-70%

= Beam already produced!
(ATLAS in-flight facility)

 Experiment by Almaraz-
Calderon, et al. (2016): 
26Alm(d,p)27Al reaction 
populates isobaric analog 
states to 26Alm(p, )�27Si
(not a HELIOS exp)

 Finalizing draft (PRL)

26Si

25Al

24Mg 25Mg

26mAl

26Mg*

26gMg

26gAl

27Si
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Conclusions on isomer beams and transfer 
reactions
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 While isomers are abundant, beams of isomers are difficult to produce

 At the moment, each exp. with isomeric beam must be approached on a 
case-by-case basis

 When possible, this novel technique can probe aspects of nuclear 
structure which are otherwise unattainable

 Nuclear isomers may play important role in nucleosynthesis
(nuclear astrophysics most famous example: 26Al)

 Transfer reactions on isomeric beams is a promising 
technique with three on going experimental efforts 
(18mF, 34mCl, 26mAl) and clear near-future physics 
opportunities
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