

Isomer beams and transfer reactions Daniel Santiago-Gonzalez

dasago@anl.gov

Louisiana State University and Argonne National Laboratory

ReA Solenoidal Spectrometer Projects Meeting

Argonne National Laboratory

2017/3/24

Isomers are common

Isomers are common

Isomers are common, so what ...

Case study: probing the single-particle character of the 13/2⁺ state in ¹⁹F

- In ¹⁹F, we can **probe** the **single-particle character** of the proposed terminating state of the ground-state rotational band, the **13/2**⁺ state
- How? By making a high-spin isomer beam and transferring a neutron^{1,2}

Which states can be populated?

LSU

Which states can be populated?

Which states can be populated?

Experiment at the HELIcal Orbit Spectrometer (HELIOS)

Iso/g.s. ratio (at production target): ~55% •

¹⁸F(*d*,*p*)¹⁹F experiment: results

Apparent excitation energy 1.1-MeV shift for reactions with isomer

— Fit using known states in 19 F (fixed E_x and FWHM, 12 states in E_x<6 MeV)

- --- $3/2^+$ state from reactions on ground state
 - $13/2^+$ state from reactions on isomer

Relative angular distributions (L=2)

10

¹⁸F(*d*,*p*)¹⁹F experiment: results

r reminiary, <u>uncertainties to be determined</u>											
		$S_{\mathrm{exp}}{}^{\mathrm{a}}$		$S_{\exp}^{\mathbf{b}}$		$S_{ m theo}{}^{f c}$			$S_{ m theo}{}^{ m d}$		
$J_i^{\pi} 2J_f^{\pi}$	$E_f \; [\mathrm{keV}]$	$\ell = 2$	$\ell = 0$	$\ell = 2$	$\ell = 0$	$0d_{5/2}$	$0d_{3/2}$	$1s_{1/2}$	$0d_{5/2}$	$0d_{3/2}$	$1s_{1/2}$
$1^+ \ 1^+$	0		0.09(X)		0.45(9)			0.42			0.53
$1^+ 5^+$	197	0.28(X)			0.24(5)	0.28	0.06		0.32	0.08	
$1^+ \ 3^+$	1554^{e}	0.607(X)		0.60(12)		0.77	0.04		0.79	0.04	
$1^+ \ 7^+$	4377^{e}	0.70(X)		0.30(6)		0.12			0.32		
$5^+ 7^+$	4377	0.88(X)				0.88			0.82	0.04	
$5^{+} 13^{+}$	4648	1.29(X)				1.28	0.12		1.29	0.14	
$5^+ \ 11^+$	6500 ^e	0.85(X)	0.10(X)			0.64		0.13	0.45		0.41
$1^+ 5^+_3$	5107	0.11(X)		0.15(3)		0.14			0.16	0.01	
$1^+ \ 1_2^+$	5938		0.12(X)				0.01	0.29			0.21

(relative) Spectroscopic factors Preliminary uncertainties to be determined

a Present. Based upon calculated ratio of ¹⁸F isomer to ground state and magnitude of spec. factor of the 3/2⁺ state from reanalysis of Kozub's data
b Kozub et al.

c S.M. calculation using PSD interaction (12 C core)

LSU

d S.M. calculation using USDB interaction (no core excitations)

$^{18}F(d,p)^{19}F$ experiment: results

r remininary, <u>uncertainties to be determined</u>											
		$S_{\exp}^{\mathbf{a}}$		$S_{ m exp}{}^{ m b}$		$S_{ m theo}{}^{ m c}$			$S_{ m theo}{}^{ m d}$		
$J_i^{\pi} \ 2J_f^{\pi}$	$E_f \; [\mathrm{keV}]$	$\ell = 2$	$\ell = 0$	$\ell = 2$	$\ell = 0$	$0d_{5/2}$	$0d_{3/2}$	$1s_{1/2}$	$0d_{5/2}$	$0d_{3/2}$	$1s_{1/2}$
$1^+ \ 1^+$	0		0.09(X)		0.45(9)			0.42			0.53
1^{+} 5^{+}	197	0.28(X)			0.24(5)	0.28	0.06		0.32	0.08	
$1^+ \ 3^+$	1554^{e}	0.607(X)		0.60(12)		0.77	0.04		0.79	0.04	
$1^+ \ 7^+$	4377 ^e	0.70(X)		0.30(6)		0.12			0.32		
$5^+ \ 7^+$	4377	0.88(X)				0.88			0.82	0.04	
$5^{+} 13^{+}$	4648	1.29(X)				1.28	0.12		1.29	0.14	
$5^{+} 11^{+}$	6500 ^e	0.85(X)	0.10(X)			0.64		0.13	0.45		0.41
$1^+ 5^+_3$	5107	0.11(X)		0.15(3)		0.14			0.16	0.01	
$1^+ \ 1^+_2$	5938		0.12(X)				0.01	0.29			0.21

(relative) Spectroscopic factors Preliminary uncertainties to be determined

a Present. Based upon calculated ratio of ¹⁸F isomer to ground state and magnitude of spec. factor of the $3/2^+$ state from reanalysis of Kozub's data **b** Kozub et al.

c S.M. calculation using PSD interaction (¹²C core)

LSU

d S.M. calculation using USDB interaction (no core excitations)

¹⁸F(*d*,*p*)¹⁹F experiment: results

Fremmary, uncertainties to be determined											
_											
		$S_{ m exp}{}^{ m a}$		$S_{ m exp}{}^{ m b}$		$S_{ m theo}{}^{ m c}$			$S_{ m theo}{}^{ m d}$		
$J_i^{\pi} 2J_f^{\pi}$	$E_f \; [\mathrm{keV}]$	$\ell = 2$	$\ell = 0$	$\ell = 2$	$\ell = 0$	$0d_{5/2}$	$0d_{3/2}$	$1s_{1/2}$	$0d_{5/2}$	$0d_{3/2}$	$1s_{1/2}$
1^{+} 1^{+}	0		0.09(X)		0.45(9)			0.42			0.53
1^{+} 5^{+}	197	0.28(X)			0.24(5)	0.28	0.06		0.32	0.08	
$1^{+} 3^{+}$	1554^{e}	0.607(X)		0.60(12)		0.77	0.04		0.79	0.04	
1^{+} 7^{+}	4377^{e}	0.70(X)		0.30(6)		0.12			0.32		
$5^+ \ 7^+$	4377	0.88(X)				0.88			0.82	0.04	
$5^{+} 13^{+}$	4648	1.29(X)				1.28	0.12		1.29	0.14	
$5^{+} 11^{+}$	6500^{e}	0.85(X)	0.10(X)			0.64		0.13	0.45		0.41
1^{+} 5^{+}_{3}	5107	0.11(X)		0.15(3)		0.14			0.16	0.01	
$1^+ \ 1^+_2$	5938		0.12(X)				0.01	0.29			0.21

(relative) Spectroscopic factors

- a Present. Based upon calculated ratio of ¹⁸F isomer to ground state and magnitude of spec. factor of the 3/2⁺ state from reanalysis of Kozub's data
 b Kozub et al.
- **c** S.M. calculation using PSD interaction (12 C core)

LSU

d S.M. calculation using USDB interaction (no core excitations)

Conclusions from ${}^{18}F(d,p)$ experiment

- We have observed neutron-transfer reactions on the short-lived 5⁺ isomeric state of ¹⁸F, thereby populating high-spin states in ¹⁹F that are otherwise inaccessible from (*d*,*p*) reactions on the ¹⁸F ground state
- We have extracted a relative spectroscopic factor for the proposed bandterminating 13/2⁺ in ¹⁹F that is 2 times larger than the one for the 3/2⁺ state (a rel. pure single-particle state), in agreement with SM calc.
- The large value of the 13/2⁺ spec. factor is further confirmation that the angular momentum of a band-terminating state is generated from the alignment of the spins of the valence nucleons with negligible contribution from collective effects
- From SM calc. the 11/2⁺ state seems to be a sensitive probe for coreexcitations in ¹⁹F (on-going data analysis)
- Paper in preparation

LSU

Future studies (at ANL, ReA, RCNP)

Other high-spin isomers (similar to ¹⁸F)

 \blacksquare = J_{iso} - $J_{g.s} \ge 2$ (same parity)

Nuc. Astro. example: ²⁶Al

- Beam already produced! (ATLAS in-flight facility)
- Experiment by Almaraz-Calderon, et al. (2016): ${}^{26}\text{Al}^{\text{m}}(d,p){}^{27}\text{Al}$ reaction populates isobaric analog states to ${}^{26}\text{Al}^{\text{m}}(p,\gamma){}^{27}\text{Si}$ (not a HELIOS exp)
- Finalizing draft (PRL)

 $\blacksquare = J_{iso} - J_{g.s} \le 2$ (same parity)

Conclusions on isomer beams and transfer reactions

- While isomers are abundant, beams of isomers are difficult to produce
- At the moment, each exp. with isomeric beam must be approached on a case-by-case basis
- When possible, this novel technique can probe aspects of nuclear structure which are otherwise unattainable
- Nuclear isomers may play important role in nucleosynthesis (nuclear astrophysics most famous example: ²⁶Al)

LSU

 Transfer reactions on isomeric beams is a promising technique with three on going experimental efforts (^{18m}F, ^{34m}Cl, ^{26m}Al) and clear near-future physics opportunities

Acknowledgments

LSU

- C. M. Deibel
- J. Blackmon
- A. Disbrow
- A. C. Lauer
- FSU
 - I. Wiedenhoever
 - S. Almaraz-Calderon
- LANL
 - A. Couture
 - J. Winkelbauer
- U. Conn

LSU

- S. A. Kuvin
- U. Maryland
 - J. Sethi

Founding agencies

This material is based upon work supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract No. DE-AC02-06CH11357 and No. DE-FG02-96ER40978. This research used resources of ANL's ATLAS facility, which is a DOE Office of Science User Facility.

ANL

- M. L. Avila
- A. D. Ayangeakaa
- B. B. Back
- S. Bottoni
- M. P. Carpenter
- J. Chen
- C. R. Hoffman
- R. V. F. Janssens
- C. L. Jiang
- B. P. Kay
- K. E. Rehm
- J. P. Schiffer
- R. Talwar
- S. Zhu

- Special thanks to
 - J. Rohrer (ANL)
 - J. Greene (ANL)
 - G. Savard (ANL)
 - C. Dickerson (ANL)
 - R. C. Pardo (ANL)
 - ATLAS Operations staff