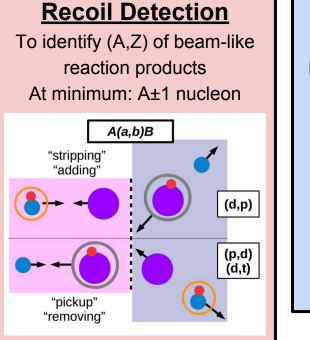
Auxiliary Charged Particle Detection

Scott Marley Louisiana State University ReA Solenoid Spectrometer Workshop

<u>Outline</u>


What systems/schemes have been used in HELIOS

Challenges and Issues for studies at ReA

Auxiliary Detectors for HELIOS

Monitor Detectors

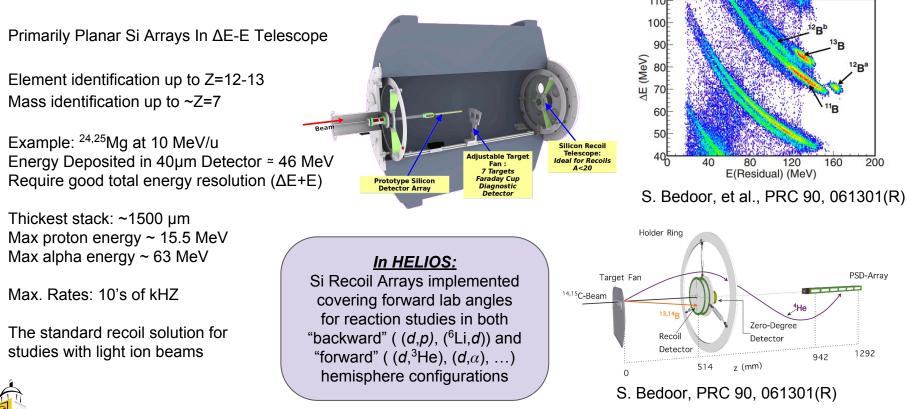
Beam Monitors:

Normalization → Abs. cross section Tuning, Beam Purity (time-dependent)

Target Monitor:

Measure target stoichiometry. Monitor light target content in high dose measurements with heavy beams (CH₂, CD₂ targets)

"Decay" Detectors


γ-rays: **APOLLO** covered by A. Couture & J. Winkelbauer

Not many cases for charged particles, but one worth mentioning...

All will be more important for ReA studies: More intense RIBs Heavier isotopes Particle Decay Channels

Recoil Detection - Silicon Arrays

ReA Solenoid Spectrometer Workshop

Recoil Detectors - Ionization Chamber

Modular, high-rate, lonization chamber at HELIOS Developed by LSU (Deibel, Lai, Santiago-Gonzalez)

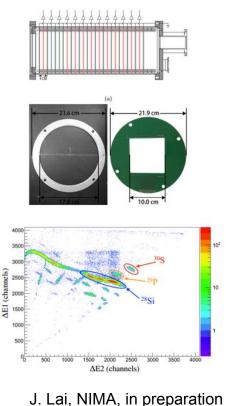
Kapton entrance windows

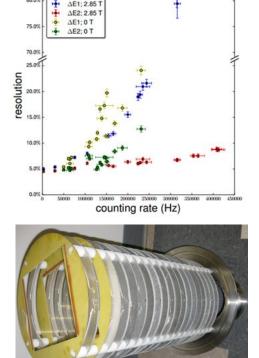
- Different diameters and thicknesses

IC Gas: CF₄ or isobutane (50-300 torr)

Energy Resolution: >5% (increases with higher rate)

Rate: up to 500kHz


- Need to use beam blocker at zero degrees


Position-Sensitivity: 3 x 3 mm wire spacing

- Provides angular information, pileup rejection

Has been used up to evaluate (pre-EBIS era) CARIBU beams . Isobars can be an issue...

Effective solution for "lighter" intermediate mass beams (up to $Z \sim 50$)

S. T. Marley ReA Solenoid Spectrometer Workshop ANL

March 24th, 2017

Recoil Detectors - Ionization Chamber

Modular, high-rate, lonization chamber at HELIOS Developed by LSU (Deibel, Lai, Santiago-Gonzalez)

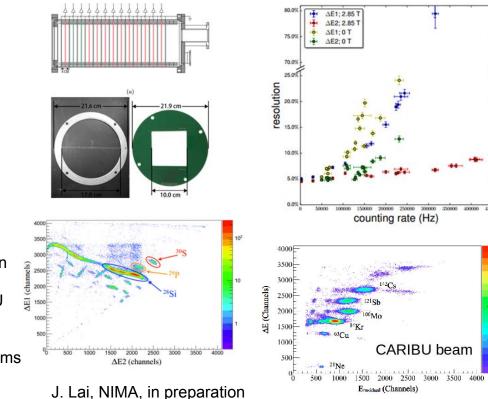
Kapton entrance windows

- Different diameters and thicknesses

IC Gas: CF₄ or isobutane (50-300 torr)

Energy Resolution: >5% (increases with higher rate)

Rate: up to 500kHz

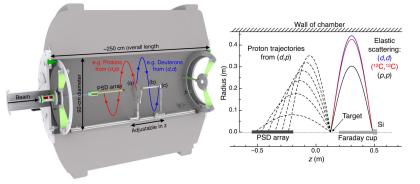

- Need to use beam blocker at zero degrees

Position-Sensitivity: 3 x 3 mm wire spacing

- Provides angular information, pileup rejection

Has been used up to evaluate (pre-EBIS era) CARIBU beams . Isobars can be an issue...

Effective solution for "lighter" intermediate mass beams $(up \text{ to } Z \sim 50)$



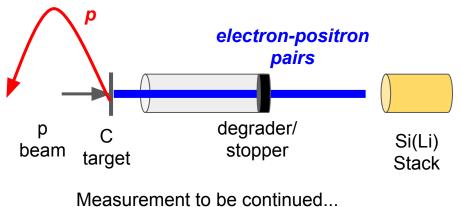
S. T. Marley ReA Solenoid Spectrometer Workshop ANL

March 24th, 2017

Monitor & Charged-Particle Detectors

Target Monitoring: Si detectors

B. P. Kay JoP: Conf. 312, 092034 (2011)


Beam Monitoring Attenuated SSB Detectors @ 0°

Successes with using small annular Si arrays at very forward & backward lab angles

Measure the pair decay branch for the Hoyle State

Measure ($\Gamma_{\rm m}/\Gamma$) to 5% or better... = 6.7×10⁻⁶

[J. Smith, A.H. Wuosmaa, U.Conn]

S. T. Marley ReA Solenoid Spectrometer Workshop ANL March 24th, 2017

(Very General) ReA SS Recoil Detector Parameters

	A≤50	A>50	ReA Beams : A with good emit
10 ³⁻⁸ pps	The current intensity & stopping power regime	Inverse Kinematics Consequences: Recoils emitted very small angles!	<i>Intensities</i> : achievable at >
	Established recoil detector technologies can be used	Require ability to distinguish beam and recoils at nearly zero degrees!	Reaction solenoid s require high
>10 ⁸ pps	High rates threaten recoil detector performance and health	"Worst Case Scenario" Heavy, Intense beams at 5-15 MeV/u (huge stopping powers)	Measuren
	Require reliable beam rejection	Rate and Z-resolution limited	Compensa auxili

ReA Beams: Assuming pure beams with good emittance, and $t_{1/2} \gtrsim 100$ ms

Intensities: Many measurements achievable at >10³ pps (i.e., transfer).

Reaction studies with new solenoid spectrometer many require higher beam intensities:

Measurement of small cross sections (<µb)

Compensate for low-efficiency auxiliary detectors

Solutions?

Short-term:use the established recoil detector designs to perform studies in the lighter mass, <10⁸ pps beams

Silicon Arrays

- Raid the Micron Catalog...
- Highly segmented Si array w/ CsI(TI) layer (HiRa-like) to identify charged particles from unbound states...

Ionization Chamber(s)

- Development of new designs, featuring diff. lengths, anode configurations, preamps, ...
- Perhaps obtain gain of 50%-100% in rate (~ MHz) with acceptable resolution?

Both have compact, established electronic and DAQ systems... Silicon arrays and ICs available on Day One

Long term: New Ideas! We need to actively start thinking outside the box

New Materials? Novel particle identification schemes?

Zero Degree Detectors for high rates and/or heavy beams...Recoil Separator? A device that can "eat" and separate the beam (SECAR-like) This is the time to discuss "wacky" ideas...

Thanks to B. P Kay, C. R. Hoffman, J. Blackmon, C. M. Deibel, J. Lai, and A. H. Wuosmaa

S. T. Marley ReA Solenoid Spectrometer Workshop ANL March 24th, 2017