Neutron-Proton Pairing and Transfer Reactions

Augusto O. Macchiavelli

Nuclear Science Division Lawrence Berkeley National Laboratory

ReA Solenoidal Spectrometer Projects

Si arrays, active targets, and beyond

24 March 2017, Physics Division, Argonne National Laboratory

Work supported under contract number DE-AC02-05CH11231.

Our Credentials ③

ATLAS-1673 Identification of the first-excited $s_{1/2} \ge 2p^{2h}$ configuration in ³⁵P

LBNL – ANL – iThemba - U. Conn. Collaboration

The Nuclear Landscape

S. Frauendorf and A.O.Macchiavelli, Progress in Particle and Nuclear Physics, 78, 24 (2014)

 $T_z = 0$

N=Z nuclei, unique systems to study *np* correlations As you move out of N=Z, T=1 *nn* and *pp* pairs will start to dominate. T=0 excited states.

Role of isoscalar (T=0) and isovector (T=1) pairing Large spatial overlap of *n* and *p* Pairing vibrations (normal system) Pairing rotations (superfluid system)

Does isoscalar pairing give rise to collective modes?

Possible signals

Binding energy differences Low-lying states of odd-odd self-conjugate nuclei Rotational properties: moments of inertia, alignments Beta decay Direct reactions N=Z nuclei, unique systems to study *np* correlations As you move out of N=Z, T=1 *nn* and *pp* pairs will start to dominate. T=0 excited states.

Role of isoscalar (T=0) and isovector (T=1) pairing Large spatial overlap of *n* and *p* Pairing vibrations (normal system) Pairing rotations (superfluid system)

Does isoscalar pairing give rise to collective modes?

Possible signals

Binding energy differences

Low-lying states of odd-odd self-conjugate nuclei

Rotational properties: moments of inertia, alignments

$< A + 1 | a^+ | A >$

Spectroscopic (U, V) Factors

Constructive interference

Two particle transfer reactions like (t,p) or (p,t), where 2 nucleons are deposited or picked up at the same point in space provide an specific tool to probe the amplitude of this collective motion.

The transition operators $< f|a^+a^+|i>$, < f|aa|i> are the analogous to the transition probabilities BE2's on the quadrupole case.

Systematic relative measurements and within a given nucleus.

Volume 37B, number 4

PHYSICS LETTERS

13 December 197

ENHANCEMENT OF DEUTERON TRANSFER REACTIONS BY NEUTRON-PROTON PAIRING CORRELATIONS*

P. FRÖBRICH

Physik-Department der Technischen Universität München, Teilinstitut Theorie, München, Germany

Received 7 October 1971

It is shown for 36 Ar (p, 3 He) 34 Cl that the transfer of a neutron-proton pair is enhanced as compared to the shell model if one takes into account T = 0 and T = 1 neutron-proton pairing correlations in the description of target and residual nucleus.

 $d\sigma/d\Omega \approx 2.5 d\sigma/d\Omega_{sp}$

(³He,p) Transfer Reactions

Measure the *np* transfer cross section to T=1 and T=0 states

Both absolute $\sigma(T=0)$ and $\sigma(T=1)$ <u>and</u> relative $\sigma(T=0) / \sigma(T=1)$ tell us about the character and strength of the correlations

Si detector 500µ 16x16 ~1sr

³⁶Ti(³He,p) at 180 MeV

Investigation of np pairing using the ³⁶Ar(³He,p)³⁸K A. M. Rogers,^{1,*} B. Back,² H. L. Crawford,³ C. M. Deibel,⁴ P. Fallon,³ C. R. Hoffman,² B. P. Kay,² J. Lee,⁵ C. J. Lister,¹ A. O. Macchiavelli,³ K. E. Rehm,² D. Santiago-Gonzalez,⁶ J. P. Schiffer,² and A. H. Wuosmaa⁷ ¹Department of Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA ²Physics Division, Argonne National Laboratory, Argonne, IL, 60439 USA ³Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA ⁴Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA ⁵RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ⁶Physics Division, Argonne National Laboratory, Argonne, IL, 60439 USADepartment of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA ⁷Department of Physics, University of Connecticut, Storrs, CT 06269, USA

National Superconducting Cyclotron Laboratory Proposal Form - PAC 41

By submitting this proposal, the spokesperson certifies that all collaborators listed have read the Description of Experiment and have agreed to participate in the experiment.

Title

Studying np pairing in N=Z nuclei: The 52Fe(3He,p) reaction at ReA3 with the AT-TPC **Spokespeople**

	Primary Spokesperson	Backup Spokesperson
Name	Yassid Ayyad	Augusto O. Macchiavelli
Address	Lawrence Berkeley	Lawrence Berkeley
	National Laboratory,	National Laboratory,
	Berkeley, CA 94720, USA	Berkeley, CA 94720, USA
Phone	510-486-7570	510-486-4428
E-Mail	ayyad@lbl.gov	aomacchiavelli@lbl.gov
Organization	LBNL	LBNL
Position	Senior Researcher	Senior Researcher

$LBNL-NSCL\ \ \text{-}\ \ Hong\ Kong-Seville \ \ Collaboration$

Systematic of (³He,p) and (p,³He) N=Z nuclei

Adapted from Marlene Assie (IPN—Orsay)

Coming up

Summary

Although simple arguments may suggest that isoscalar pairing should be important, it is still not clear if it gives rise to collective modes.

Spin-orbit -- J=1 pairs P-wave contribution to matrix-elements -- Core polarization Direct reactions are unique tools in our experimental study of exotic nuclei.

Two particle transfers provide probes of the amplitude of pairing collective modes.

(p,³He), (³He,p), (d, α), and (α ,d) reactions can be used to firmly elucidate this question, particularly in the region from ⁵⁶Ni to ¹⁰⁰Sn

We need:

```
ReA Beams
????? (HELIOS-like spectrometer)
AT-TPC
gamma-particle coincidences
```

NP-Pairing and Quartetting ? More generally alpha-clustering → ECT* Workshop http://www.ectstar.eu/node/1664

Reactions: (d,⁶Li) - Forward Lab angles - and (⁶Li,d) – Backward Lab angles

