Rare-Isotope Beam Facilities in Asia

Osamu Kamigaito
RIKEN Nishina Center
"A new generation of high-intensity RNB facilities of each of the two basic types, ISOL and In-Flight, should be built on a regional basis."

(The OECD Megascience Forum Report of the Working Group on Nuclear Physics, 1999)
RIB facilities in Asia

- RIKEN / RIBF
- KEK / KISS
- IMP / HIRFL
- IUAC
- VECC
- CIAE / BRIF
- IBS / RISP
- RIKEN / RIBF
- KEK / KISS
RIKEN RIBF, Japan

3 Injectors & 4 Booster cyclotrons
In-flight fragmentation / fission

Y. Yano, NIM B261 (2007) 1009
(RIBF=Radioactive Isotope Beam Factory)
RILAC2 Layout

Operation started in Dec 2010

To RRC @ 670 keV/u (M/q<6.8)

Pre-buncher

DTL1

RFQ

DTL2

DTL3

Rebuncher

High-Energy Beam Transport

Thin & Strong Quadrupoles

Low-Energy Beam Transport

28GHz SC-ECRIS

K. Yamada, IPAC2012
Achieved beam intensities at RIBF

- pol-d (250 MeV/u) 120 pnA
- d (250 MeV/u) 1000 pnA
- 4He (320 MeV/u) 1000 pnA
- 14N (250 MeV/u) 400 pnA
- 18O (345 MeV/u) 1000 pnA
- 48Ca (345 MeV/u) 415 pnA
- 86Kr (345 MeV/u) 30 pnA

- 124Xe (345 MeV/u) 15 pnA
- 238U (345 MeV/u) 3.5 pnA

=> 2×10^{10} pps
R&Ds:
• Charge stripper
 => (Dr. Okuno’s talk)
• Upgrade of fRC
 => Waiting for beam test
• UO₂ oven
 => in progress
• Stabilization of temperature
• Dated components
Recent results from RIBF

New $T_{1/2}$ measured!

S. Nishimura et al., PRL 106 (2011) 052502

5 PRL, 3 PLB, 2 PRC, 2 JPSJ ..
New experimental apparatus & Collaboration

EUROBALL-RIKEN Cluster Array (EURICA)

Superconducting Analyser for Multi-particle from Radio Isotope beam (SAMURAI)

Rare-RI ring Budget approved!

KISS / KEK (former TRIAC group)
KISS project by KEK at RIKEN

Argon-gas catcher cell
+ Laser resonant ionization (Z)
+ Mass separation (A)
+ Low-background det. system

E3-room

Decay measurement stations

E2-room

Mass separator

J3-room

Laser light

GAs-cell system

Xe, U @10 MeV/u
From RILAC2-RRC

High purity Argon gas

$\varepsilon_{\text{tot.}} \sim 7\%$ ($t_{1/2}=500\text{ ms}$)
$R_Z \sim 1000$, $R_A \sim 840$
$T_{\text{extr.}} \sim 240\text{ ms}$

~3 day machine time for ^{200}W

Courtesy of Prof. Miyatake (KEK)
(KISS : KEK Isotope Separation System)
Argon-gas catcher cell
+ Laser resonant ionization (Z)
+ Mass separation (A)
+ Low-background det. system

Decay measurement stations

E3-room

E2-room

J3-room

Mass separator

Laser light

Xe, U @10 M
From RILAC2

High purity Argon gas

GAs-cell system

High Voltage Cage

Courtesy of Prof. Miyatake (KEK)

(KISS : KEK Isotope Separation System)

E2-room

Mass-, Atomic-number Separated Beams

Primary Beams

Gas Cell (inside)
IMP-CAS HIRFL, China

2 Cyclotrons + 2 Cooler-ring Synchrotron
In-flight fragmentation

SSC(1988) K450MeV

SFC(1987) K69MeV

Mass measurement ToF target

E-cooler

PISSA

8.4 Tm C=128.8 m

CSRm(2006)
10.64 Tm C=161 m

CSR(2007)

Cancer therapy

Internal target

External target

Medial energy Exp. area

Low energy Exp. area

LHC (Large Hadron Collider)

Courtesy of Prof. Zhao (IMP)

(HIRFL = Heavy Ion Research Facility in Lanzhou)
New beams in HIRFL

$\text{H}_2^+\, 400\text{MeV/u}$

$\text{Bi}^{36+}\, 170\text{MeV/u}$

$\text{U}^{32+}\, 100\text{MeV/u}, \, 10^7\text{ppp}$
Long pulse slow extraction in CSRm: 10,000 s

- 1/3 resonance slow extraction
- RF-Knockout exciting
- Feedback of extraction rates with fast Qs

240 ± 50 ions

Courtesy of Prof. Zhao (IMP)
Recent results from HIRFL

Mass measured for drip-line nuclei 63Ge, 65As, 67Se, 71Kr

X. L. Tu, PRL 106 (2011) 112501
Near-future plan (next 2~3 years): SSC-Linac

1. 1 MeV/u beam for SSC
2. Beam intensity: >0.5 puA for 238U at Linac.
3. Parallel operation with SFC and Linac-SSC.

Courtesy of Prof. Zhao (IMP)
1. 1 MeV/u beam for SSC
2. Beam intensity: >0.5 puA for 238U at Linac.
3. Parallel operation with SFC and Linac - SSC.

Near-future plan (next 2~3 years): SSC-Linac

Aluminum prototype of IH-DTL tank1

Cavity coated with copper in inner surface

Courtesy of Prof. Zhao (IMP)
Near-future plan (next 3~5 years): CSR-Linac

1. 10 MeV/u beam for CSRm.
2. Beam intensity: >5 euA for 238U.
3. Parallel operation with SFC, SFC+SSC and Linac-CSR.

<table>
<thead>
<tr>
<th>Element</th>
<th>Length [cm]</th>
<th>Frequency [MHz]</th>
<th>Energy [MeV/u]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEBT</td>
<td>920</td>
<td>0→13.4167</td>
<td>0.00373</td>
</tr>
<tr>
<td>RFQ</td>
<td>252</td>
<td>53.6667</td>
<td>0.143</td>
</tr>
<tr>
<td>MEBT1</td>
<td>175</td>
<td>53.6667</td>
<td>0.143</td>
</tr>
<tr>
<td>DTL1</td>
<td>480</td>
<td>53.6667</td>
<td>1.025</td>
</tr>
<tr>
<td>MEBT2</td>
<td>400</td>
<td>161</td>
<td>1.025</td>
</tr>
<tr>
<td>DTL2</td>
<td>3000</td>
<td>161</td>
<td>10</td>
</tr>
<tr>
<td>HEBT</td>
<td>3300</td>
<td>161</td>
<td>10</td>
</tr>
</tbody>
</table>
CIAE BRIF, China

- ISOL / Driver = 100 MeV 200 µA compact H⁻ cyclotron
- 20000 mass resolution ISOL => Tandem => 2 MeV/q super-conducting LINAC

- Civil engineering started in 2011 / Cyclotron fabrication completed in 2011

Courtesy of Prof. Liu (CIAE)
(BRIF = Beijing Rare Ion beam Facility)
H- compact cyclotron (CYCIAE-100)

Courtesy of Prof. Liu (CIAE)
H- compact cyclotron (CYCIAE-100)

Courtesy of Prof. Liu (CIAE)
Superconducting linac in fabrication

- BRIF will be commissioned in 2014.

Courtesy of Prof. Liu (CIAE)
Future plan: CARIF project at CIAE

- ISOL + PF scheme

CARIF (China Advanced Rare Ion-beam Facility)

- Reactor
- Target/Ion source
 - He-jet/In-pile
- CARR
 - $5 \text{ g}^{235}\text{U}$
 - 2×10^{15} fis./s
 - 60 MW, Max. $8 \times 10^{14} n_{th}/c/cm^2$

- ISOL
 - $10 \mu\text{A}$

- ECR
- Stable IS

- LINAC
 - 10 MeV/u
 - LINAC
 - 150 MeV/u

- Decay Spec.
- Nucl. Data
- Basic Sym.

- Nucl. Astro.
- SHE
- RI reac. Sepr.

- Cancer The.
- Single Part. Eve.

- Production target
 - 5 mg/cm2^9Be
 - Ca. 1.8 B RMB, commission ca. 2020

- Drip line search
- New magic No.
- $\beta x n$ decay

- Exp. Term.
- HI, n, γ, β

- Unstable Data
- Nucl. Effects

- Explore extreme
- Extend application
- Combine ISOL and PF
- Using mature technology
- Aiming world class facility

- ^{78}Ni 250 pps
- ^{120}Sr 2x10$^{-4}$ pps
- ^{132}Sn 5x1010 pps
- ^{91}Kr 4x1011 pps
- ^{142}Xe 9x109 pps

- Courtesy of Prof. Liu (CIAE)
Linac3 is placed here for the time-being.

RIB project – VECC, India

Courtesy of Prof. Chakrabarti (VECC)
RIB project – VECC, India

Linac3 is placed here for the time-being

Linac3

LINAC2

LINAC1

RFQ1

RFQ2

ECR

HR cave-1

1.3 MeV/u RIB

100 keV/u

289 keV/u

415 keV/u

2011

2008

2005

2011

Target-IS

K130 Cyclotron beam

K130 vault

Courtesy of Prof. Chakrabarti (VECC)
Linac3 is placed here for the time-being.

RIB project – VECC, India

Courtesy of Prof. Chakrabarti (VECC)
Linac3 is placed here for the time-being

Linac2

Linac1

RFQ1

RFQ2

LINAC3

100 keV/u 2008

289 keV/u 2010

415 keV/u 2011

HR cave-1

K130 vault

Target-IS

K130 Cyclotron beam

Linac3 is placed here for the time-being

Courtesy of Prof. Chakrabarti (VECC)
RIB project – VECC, India

Linac3 is placed here for the time-being.

Multiple target chamber

Courtesy of Prof. Chakrabarti (VECC)
Measured RIB decay-spectra before RFQ2

<table>
<thead>
<tr>
<th>RIB</th>
<th>Prod. route</th>
<th>T1/2</th>
<th>pps @ FC2</th>
</tr>
</thead>
<tbody>
<tr>
<td>14O</td>
<td>14N(p,n)</td>
<td>71 s</td>
<td>4.4×10^3</td>
</tr>
<tr>
<td>42K</td>
<td>40Ar(α,pn)</td>
<td>12.36 hr</td>
<td>2.7×10^3</td>
</tr>
<tr>
<td>41Ar</td>
<td>40Ar(α,2pn)</td>
<td>109 min</td>
<td>1.3×10^3</td>
</tr>
</tbody>
</table>

Gamma-ray spectrum at FC2 (before RFQ)
50 MeV superconducting e-linac (VECC-TRIUMF collaboration)

Courtesy of Prof. Chakrabarti (VECC)

Injector
300 keV to 10 MeV

Accelerator
10 MeV to 50 MeV

Phase-1: 2009 – 2013
Phase-2: 2013 – 2017
Future plan: ANURIB facility

A National Facility for Unstable and Rare Isotope Beams

Phase-1

12th Plan
2012-17

High freq., high current ECR Ion Source

Material Science with stable & RIBs

1.0 MeV/u

1.5 keV/u

0.1 MeV/u

7 MeV/u

100 MeV/u

Sc electron LINAC
50 MeV, 100 kW

e- n

Actinide Target

Radioactive Atoms

1+ RIB

ECR Ion Source

Stable isotope injection

RFQ

Transfer line for nuclear astrophysics

NEutron beam-line for nuclear astrophysics

Material Science with stable & RIBs

Spectroscopy of r-process, n-rich exotic nuclei

Nuclear Astrophysics

Nuclear structure, Elastic/ Inelastic scattering, Coulomb barrier physics, Super Heavy Elements

Studies on drip line & near drip line nuclei

Positron beam-line

Studies on drip line & near drip line nuclei

Positron beam-line

Future plan: ANURIB facility

Courtesy of Prof. Chakrabarti (VECC)
Production of low energy 7Be radioactive ion beam at IUAC using HIRA

($HIRA$: Heavy-Ion Reaction Analyzer)

7Be radioactive ion beam (RIB) has been optimised

Energy range of 7Be RIB: 17 to 22 MeV
Production reactions: $(p,n),(d,n)$ type of reactions in inverse kinematics
Filter + transporter: existing RMS, HIRA operated in new ion optics

Typical RIB parameters
Size ~ 4 mm (fwhm), φ & $\varphi \varphi = +/- 30$ mrad, $\varphi E = +/- 0.5$ MeV
Purity $> 99\%$, Intensity $\sim 10^4$ pps
HYbrid Recoil mass Analyzer - **Unique dual-mode, dual-stage spectrometer with large acceptances and rigidity at IUAC, New Delhi**
(to fully exploit ECR + LINAC beams of higher energy and intensity)

Useful to access heavy fusion evaporation residues with large efficiency along beam direction in **gas-filled mode** rejecting beam-like particles, target-like recoils and fission fragments – **First stage only**
(similar to Dubna, RIKEN, LBL, JYFL facilities but unique in design)

Useful to produce secondary radioactive beams (similar to 7Be in HIRA but with higher energies and lesser purity) in **momentum achromatic (vacuum) mode** – **First stage only**
Nuclei: 7Be, 13N, 17,18F

Energy Range: 20-50 MeV

Expected flux: 10^3-10^4/s
IBS – RISP project, Korea

Science Business Belt

(RISP=Rare-Isotope Science Project)
Concept of the Accelerator Complex

IF Linac

200 MeV/u (U), 8 µA

Nuclear data

Medical science
Material science

Medical Research

Fragment Separator

Gas Catcher, Gas cell

High Energy Experiments

Atomic Trap Experiments

Nuclear Physics

Material science

Bio science
Medical science

IBS – RISP project, Korea

Courtesy of Prof. Kim (SNU/IBS)
Summary

- R&Ds of RI-Beam facilities are very active in Asia.
- New facilities are planned to start in coming 10 years.
- Regional and international collaborations are important in various technical challenges.
Many thanks to

H. W. Zhao
W. P. Liu
A. Roy
A. Chakrabarti
S. K. Kim
E. S. Kim
H. Sakurai
M. Wakasugi
S. Nishimura
H. Miyatake
Accelerator Group
Nuclear Landscape

- Neutron halo & skin
- Proton halo
- New excitation mode
- rp-process
- Evolution of Shell structure
- r-process
- Super-Heavy Element

Stable (Stability line)

O Synthesis

Ni, 28
Ca, 40
He, 2
O, 8
World’s first superconducting RING cyclotron
$B_{\text{max}} = 3.8 \, \text{T}$, Total weight = 8300 tons

First beam: Dec. 2006
Achieved Intensity=> $^4\text{He}: 1000 \, \text{pnA}$, $^{48}\text{Ca}: 415 \, \text{pnA}$, ^{238}U: 3.5 pnA etc.
2007 BT

2008 BT

2009 BT

2010 BT