Design study of in-flight fragment separator for rare isotope science project in Korea

J. Kim, D. Kim, M. Kim, J. Song, C. Yun, W. Wan* and S. Kim

Institute for Basic Science, Korea
*Lawrence Berkeley Laboratory

Chicago, June 18, 2012
Science Business Belt and Institute for Basic Science in Korea

Layout of Institute for Basic Science (IBS)
Advanced heavy ion accelerator facility for nuclear science and applications

Three accelerators
- **SC Linac1** 200 MeV/u for 238U, 600 MeV for p: IF and ISOL driver
- **Cyclotron** 70 MeV for p: ISOL driver
- **SC Linac2** ~18 MeV/u for A/q ≤ 4 (?): ISOL post accelerator

Multi-user capability
- Independent operation of three accelerators
- Multiple operation modes: e.g. SC Linac1, Cyclotron + SC Linac2
- Utilization of empty rf buckets for different beams

81.25 MHz (QWR), 162.5 MHz (HWR), 325 MHz (Spoke)
Scope of Presentation in the RI Science Project

Two presentations on Thursday

Presentation on Friday
Layout of the fragment separator area

Future facility

Future expansion

Hot zone, 400 kW beam dump
Design of In-flight Fragment Separator

Pre-separator: S-shape
Main separator: C-shape

Max. magnetic rigidity = 8 T·m

W. Wan, J. Kim, Cyclotron Conf. 2010
Beam optics calculation of s-shape pre-separator

Aberrations up to 7th order

Δp/p = 1.5%

Calculated with TURTLE
ε = 4 π mm·mrad
Δp/p = ± 5 %
Optics of the 4-dipole C-shape pre-separator

- Horizontal
 - Beam dump
 - Shielding wall
 - Wedge
 - $\Delta p/p = 0.1\%$

- Vertical
 - $\Delta p/p = 1.5\%$
A 4-dipole C-shape with more elements

A half of the pre-separator

Beam dump
Magnet parameters for the S-shape pre-separator

- angular acceptances: 80 mrad, 100 mrad
- momentum acceptance: 18 % for r=20 cm, 9 % for r=15 cm
- length: 24.8 m

<table>
<thead>
<tr>
<th>Type</th>
<th>Length (m)</th>
<th>Pole tip radius (m)</th>
<th>Field at pole tip (T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quad</td>
<td>0.65</td>
<td>0.15</td>
<td>2.25</td>
</tr>
<tr>
<td>Quad</td>
<td>0.8</td>
<td>0.15</td>
<td>-2.33</td>
</tr>
<tr>
<td>Quad</td>
<td>0.5</td>
<td>0.15</td>
<td>2.16</td>
</tr>
<tr>
<td>Dipole</td>
<td>30 degrees</td>
<td>0.1</td>
<td>1.20</td>
</tr>
<tr>
<td>Quad</td>
<td>0.65</td>
<td>0.2</td>
<td>1.96</td>
</tr>
<tr>
<td>Quad</td>
<td>0.8</td>
<td>0.2</td>
<td>-2.28</td>
</tr>
<tr>
<td>Quad</td>
<td>0.5</td>
<td>0.2</td>
<td>1.99</td>
</tr>
<tr>
<td>Sextupole</td>
<td>0.3</td>
<td>0.2</td>
<td>1.26</td>
</tr>
<tr>
<td>Sextupole</td>
<td>0.3</td>
<td>0.2</td>
<td>-1.26</td>
</tr>
<tr>
<td>Quad</td>
<td>0.5</td>
<td>0.2</td>
<td>1.99</td>
</tr>
<tr>
<td>Quad</td>
<td>0.8</td>
<td>0.2</td>
<td>-2.28</td>
</tr>
<tr>
<td>Quad</td>
<td>0.65</td>
<td>0.2</td>
<td>1.96</td>
</tr>
<tr>
<td>Dipole</td>
<td>30 degrees</td>
<td>0.1</td>
<td>1.20</td>
</tr>
<tr>
<td>Quad</td>
<td>0.5</td>
<td>0.15</td>
<td>2.16</td>
</tr>
<tr>
<td>Quad</td>
<td>0.8</td>
<td>0.15</td>
<td>-2.33</td>
</tr>
<tr>
<td>Quad</td>
<td>0.65</td>
<td>0.15</td>
<td>2.25</td>
</tr>
</tbody>
</table>

Calculated using COSY Infinity (W. Wan)

- Further calculation underway to increase momentum dispersion at beam dump
- Multipole coils at the locations of quadrupole
Beam optics of the main separator

\[\Delta p/p = \pm 5\% \]
Plans for the next fiscal year (July ’12 – April ‘13)

• Finalizing the IF separator configuration with more optics calculations (a design review planned in the end of the year)

• Start prototyping of superferric and high-Tc SC magnet. → collaboration with BNL

• Design and test on a single layer and multi-layer graphite targets

• Radiation transport and shielding calculations especially in the pre-separator area (MCNPX, PHITS,…)

• Study on the remote handling system.

• RF deflector design study for beam purification.
Prototyping of a sc-quadrupole magnet

Design parameters
• Pole tip radius: 170 mm
• Length of iron: 740 mm
• Outer radius of yoke: 480 mm
• Field gradient: 14 T/m

Multipole components at r=12 cm
• $\int B_{\text{hex}}/B_{\text{quad}}$: $\sim 1/1000$
Test cryostat for prototype quadrupoles

- Two small cryo-coolers?
- Multipole coils placed on the cold bore tube
- High Tc SC-magnet test.

Estimation of heat loads on the cryostat

<table>
<thead>
<tr>
<th>Part</th>
<th>Heat load (He, 4K)</th>
<th>Heat load (N2, 80K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shield radiation</td>
<td>0.30 W</td>
<td>9.4 W</td>
</tr>
<tr>
<td>Support link</td>
<td>0.64 W</td>
<td>16.0 W</td>
</tr>
<tr>
<td>He port (vent)</td>
<td>0.77 W</td>
<td>7.8 W</td>
</tr>
<tr>
<td>Current lead</td>
<td>0.75 W</td>
<td>45.0 W</td>
</tr>
<tr>
<td>Total</td>
<td>2.46 W</td>
<td>78.2 W</td>
</tr>
</tbody>
</table>

Schematic view of the cryostat with prototype quadrupole magnets inside
Preliminary heat deposit calculation using PHITS

Heat at rotating target (12C)

<table>
<thead>
<tr>
<th>Elements</th>
<th>Heat$_{\text{max}}$ [J/cm3]</th>
<th>Dose rate [Gy/yr]*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coll. & Q1</td>
<td>0.37</td>
<td>2.06\times108</td>
</tr>
<tr>
<td>Q2</td>
<td>0.05</td>
<td>2.06\times106</td>
</tr>
<tr>
<td>Q3</td>
<td>0.02</td>
<td>2.06\times106</td>
</tr>
<tr>
<td>Beam dump</td>
<td>277.15</td>
<td>5.57\times1012</td>
</tr>
</tbody>
</table>

* dose rate calculated using 400MeV/u 238U beam at 400 kW and 9Be target
Calculation of radioactivity decay for 12C target

Used codes:
PHITS \rightarrow DCHAIN-SP

- Assuming 30 days of irradiation with U beam at 400 kW.
- Decay during the irradiation period of 30 days is not properly considered.
Radiation shielding calculation in the beam dump area

Simplified geometry for shielding calculation near beam dump

Comparison of neutron energy spectrum in forward direction

Dose rate versus shielding wall thickness

- PHITS
- MCNPX

25 cm (iron) + 25 cm (concrete)

400 kW, 1 GeV proton
Design of an rf deflector to purify rare isotope beams

A filtering option to purify proton-rich rare isotope beams \rightarrow rf deflector

$Q=11400$

$V=100$ kV at 7.1 kW

3D modeling and E-field distribution calculated along the electrodes
Current Status

• **Beam optics design** will be performed with more manpower. → Possibility of a branched beam line in the pre-separator area is to be studied.

• **Pre-separator design including the target and beam dump** is the main focus.

• **Radiation shielding** and **radiation transport** calculations are carried out using different codes.

• **Preparations for prototyping** of superferric quadrupole magnet and high-Tc coil magnet are underway.
Schedule and Budget

Budget

~420 M$ (accelerator and experimental systems excluding staff salary and civil construction)