Keyword: neutron
Paper Title Other Keywords Page
MOC02 Progress of the SPIRAL2 Project cyclotron, ISOL, heavy-ion, proton 40
 
  • E. Petit
    GANIL, Caen, France
 
  The SPIRAL2 facility will extend the possibilities offered at GANIL to heavier radioactive beams, with much higher intensities : it will provide intense beams of neutron-rich exotic nuclei created by the ISOL production method. The extracted exotic beam will be used either in a new low energy experimental area called DESIR, or accelerated by the existing SPIRAL 1 cyclotron (CIME. The intense primary stable beams (deuterons, protons, light and heavy ions) will also be used at various energies for nuclear physics, as well as for neutron-based research and multi-disciplinary research, in dedicated caves called S3 and NFS. During year 2008, the decision has been taken to build the SPIRAL2 machine in two phases: - first phase including the driver accelerator and its associated new experimental areas (S3 and NFS caves), - second phase including the RIB production part, with the low energy RIB experimental hall called DESIR, and the connection to the GANIL existing facility for post-acceleration by the existing CIME cyclotron. The SPIRAL2 facility is now in its construction phase, with the objective of obtaining the first beams for physics during year 2014 with the first phase.  
slides icon Slides MOC02 [5.173 MB]  
 
TUA03 The Compact Pulsed Hadron Source Status* rfq, proton, target, DTL 112
 
  • X. Guan
    TUB, Beijing, People's Republic of China
 
  Abstract The Compact Pulsed Hadron Source (CPHS) at the Tsinghua University in Beijing, China has been reported in this paper. CPHS consists of a proton linac, a neutron target station, and a small-angle neutron scattering instrument, a neutron imaging/radiology station, and a proton irradiation station. The proton linac accelerator part is composed of a ECR ion source. LEBT section, a RFQ accelerator, a DTL linac and a HEBT. A 3 meters long of RFQ machine can accelerate the proton to 3MeV. No MEBT will be requirement in this project. The Drift Tube Linac with permanent magnets focusing lens will accept the proton beam direct from RFQ. A 4.3 meters length of DTL will accelerate the beam up to 13MeV. The HEBT section will transport the proton beam from output of DTL to the center of MTR. Up to now, the IS/LEBT and the RFQ heve ready. The first phase of the CPHS construction is scheduled to complete 3MeV proton beam on the target in the middle of 2012.
*Work supported by the “985 Project” of the Ministry of Education of China,
**[email protected]
 
slides icon Slides TUA03 [3.998 MB]  
 
TUC04 Experiences and Lessons Learned at CARIBU with an Open 252Cf Source ion, controls, monitoring 155
 
  • S.I. Baker, J.P. Greene, A. Levand, R.C. Pardo, G. Savard, R.C. Vondrasek, L.W. Weber
    ANL, Argonne, USA
 
  Funding: This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract No. DE-AC02-06CH11357.
The CARIBU (the CAlifornium Rare Ion Breeder Upgrade) project at ATLAS is based on the creation of beams of neutron-rich nuclei produced as fission fragments from the 3% fission branch that occurs naturally in the decay of Cf-252. These fission fragments are thermalized in ultrapure helium gas and turned into a charged beam for use by the ATLAS accelerator or ‘stopped’ beam experiments. This requires a very thin source, electroplated on a stainless steel or platinum backing so that the fission fragments escape into the helium gas and are efficiently thermalized and collected into an ion beam. The information learned from the successive use of two sources with strengths of 2 mCi and 100 mCi has now prepared us for the installation in mid-summer of a 500 mCi source recently produced by Oak Ridge National Laboratory. This paper will describe the radiological monitoring system and our experience with the two weak “open” sources which have exercised and tested our radiological controls, emissions monitors, and procedures for the CARIBU facility and the source transfer area.
 
slides icon Slides TUC04 [1.605 MB]