Author: Ostroumov, P.N.
Paper Title Page
WEB02 Commissioning of CARIBU EBIS Charge Breeder Sub-systems 165
 
  • S.A. Kondrashev, C. Dickerson, A. Levand, P.N. Ostroumov, R.C. Vondrasek
    ANL, Argonne, USA
  • M.A. Batazova, G.I. Kuznetsov
    BINP SB RAS, Novosibirsk, Russia
  • A.I. Pikin
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract number DE-AC02-06CH11357.
A high-efficiency charge breeder based on an Electron Beam Ion Source (EBIS) to increase the intensity and improve the purity of accelerated neutron-rich radioactive ion beams is being developed by the ANL Physics Division. The design of the EBIS charge breeder is complete and manufacturing of the components and sub-systems is in progress. A 6-Tesla superconducting solenoid and a high-perveance electron gun were recently delivered and successfully commissioned. The current status of the ANL EBIS development and commissioning results of different EBIS sub-systems will be presented.
 
slides icon Slides WEB02 [1.219 MB]  
 
WEB04 Electron and Ion Beam Dynamics in the CARIBU EBIS Charge Breeder 172
 
  • C. Dickerson, S.A. Kondrashev, B. Mustapha, P.N. Ostroumov
    ANL, Argonne, USA
  • A.I. Pikin
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract number DE-AC02-06CH11357.
An Electron Beam Ion Source (EBIS) is being built to charge breed ion beams from the Californium Rare Isotope Breeder Upgrade (CARIBU) for acceleration in the Argonne Tandem Linear Accelerator System (ATLAS) at Argonne National Laboratory (ANL). The overall efficiency of the source and charge breeder system is important since CARIBU will produce many low intensity radioactive ion species. Simulations of the electron and ion beam dynamics have been used to determine the system’s expected performance. The details of these simulations and results will be presented.
 
slides icon Slides WEB04 [1.362 MB]  
 
WEC01 Production 72 MHz β=0.077 Superconducting Quarter-wave Cavities for ATLAS 174
 
  • M.P. Kelly, Z.A. Conway, S.M. Gerbick, M. Kedzie, R.C. Murphy, B. Mustapha, P.N. Ostroumov, T. Reid
    ANL, Argonne, USA
 
  A total of eight 72 MHz β=0.077 superconducting quarter-wave cavities have recently been completed at Argonne National Laboratory. Seven of these will installed into the ATLAS superconducting heavy-ion linac as part of a beam intensity upgrade, with one remaining for the purposes of continuing to push the performance limits in these structures. Cavities were fabricated using techniques adapted the worldwide effort push niobium cavities close to the material limits. Key developments include the use of electropolishing on the complete helium-jacketed cavity. Wire EDM has been used instead of traditional niobium machining in order to minimize performance limiting defects near the weld seams. Hydrogen degassing at 600C after electropolishing has also been performed. Initial test results show practical acceleration at 4 Kelvin with cavity voltages, Vacc>3 MV/cavity and at 2 Kelvin with Bpeak>120 mT and Vacc>5 MV/cavity.  
slides icon Slides WEC01 [2.843 MB]  
 
THA01 Heavy Ion Superconducting Linacs: Status and Upgrade Projects 196
 
  • P.N. Ostroumov
    ANL, Argonne, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under contract number DE-AC02-06CH11357.
We observe that there is an increase in the demand, by the scientific community, for accelerated CW ion beams which can be efficiently provided by SC ion linacs. This demand can be categorized into two areas: existing and new facilities. Existing facilities are being refurbished and upgraded for higher energies and beam intensities. Several new projects are under development or construction worldwide. Recently, development of new SC ion linacs has started in China, Korea and Spain. In this talk I will briefly review both the upgrade and new SC ion linac projects with a primary focus on the advances in heavy-ion linac technologies achieved at ANL in connection with the efficiency and intensity upgrade of ATLAS.
 
slides icon Slides THA01 [3.981 MB]  
 
THB02 New Design for the SARAF Phase II Linac 206
 
  • B. Mustapha, Z.A. Conway, M.P. Kelly, A. Kolomiets, S.V. Kutsaev, P.N. Ostroumov
    ANL, Argonne, USA
  • J. Rodnizki
    Soreq NRC, Yavne, Israel
 
  Funding: This work was supported by the ANL WFO No. 85Y47.
We have developed a new design for the 40 MeV/u - 5 mA proton/deuteron SARAF Phase-II Linac. It includes a RFQ, room-temperature bunchers and two types of SC cavities. The new design is based on highly optimized ring-shaped HWR structures operating at 176 MHz, the same frequency as the current SARAF Phase-I linac. We will first present the optimized design of all the components from the RFQ to the SC cavities, then the proposed linac layout, and finally the results of end-to-end beam dynamics simulations including machine errors, realistic corrections and beam loss analysis.
 
slides icon Slides THB02 [2.634 MB]