Violations of *K*-Conservation in ¹⁷⁸Hf

A. B. Hayes¹, D. Cline¹, C. Y. Wu¹, J. Ai², H. Amro², C. Beausang³, R. F. Casten², J. Gerl⁴, A. A. Hecht², A. Heinz², R. Hughes², R. V. F. Janssens⁵, C. J. Lister⁵, A.O. Macchiavelli⁶, D. A. Meyer², E. F. Moore⁵, P. Napiorkowski⁷, R. C. Pardo⁵, Ch. Schlegel⁴, D. Seweryniak⁵, M. W. Simon¹, J. Srebrny⁸, R. Teng¹, K. Vetter⁶ and H. J. Wollersheim⁴

¹Nuclear Structure Research Laboratory^{*}, Department of Physics, University of Rochester, Rochester, NY 14627

²Wright Nuclear Structure Laboratory⁶, Yale University, New Haven, CT 06520
³Physics Department^o, University of Richmond, Richmond, VA 23173
⁴GSI, Gesellschaft für Schwerionenforschung, Planckstrasse 1, D-64291 Darmstadt, Germany
⁵Physics Division, Argonne National Laboratory⁷, Argonne, Illinois 60439
⁶Lawrence Berkeley National Laboratory⁷, Berkeley, CA 94720
⁷Heavy Ion Laboratory, ⁸Institute of Experimental Physics, Warsaw University[‡], Warszawa, Poland

Abstract. Coulomb excitation of K^{π} =6⁺(t_{1/2}=77 ns), 8⁻(t_{1/2}=4.0 s) and 16⁺(t_{1/2}=31 y)¹⁷⁸Hf isomers has led to the measurement of a set of E λ matrix elements, coupling the isomer bands to the γ -and ground state bands. The resulting matrix elements, derived using a coupled-channel semiclassical Coulomb excitation search code, have been used to probe the *K*-components in the wave functions and revealed the onset and saturation of *K*-mixing in low-*K* bands, whereas *K*-mixing is negligible in the high-*K* bands. The implications can be applied to other quadrupole-deformed nuclei. An upper limit on the Coulomb depopulation yield of the 16⁺ isomer was calculated based on the present set of matrix elements.

Keywords: isomer, *K*-isomer, *K*-mixing, Coulomb excitation PACS: 27.70.+q, 23.20.-g, 25.70.De

INTRODUCTION

Studies of electromagnetic (EM) excitation and de-excitation of high-*K* isomeric states¹⁻⁵ have demonstrated significant violations of the *K*-selection rule in axially symmetric, quadrupole-deformed nuclei. The *K*-selection rule⁶ does not allow EM transitions between two states $|I_iM_iK_i\rangle$ and $|I_fM_fK_f\rangle$ of an axially symmetric nucleus for which the forbiddenness $v \equiv |\Delta K| \rightarrow \lambda$ is greater than zero, where λ is the multipole order and $\Delta K \equiv K_f \cdot K_i$. The degree of hindrance of a *K*-forbidden transition can be expressed in terms of the "reduced hindrance" $f_v \equiv (B(\mathcal{M}\lambda)_{W.u.}/B(\mathcal{M}\lambda))^{1/v}$, where $B(\mathcal{M}\lambda)_{W.u.}$ is the Weisskopf single-particle estimate. The EM population of high-*K* states from the ground state band (GSB) is unlikely, either through highly hindered *K*-forbidden transitions, $f_v >>1$ is expected. The present work has used the hindrance of the K-forbidden transitions to probe *K*-admixtures in the ¹⁷⁸Hf rotational bands and has revealed the breakdown of *K*-selection as a function of spin.

EXPERIMENT

The $K^{\pi}=6^+$, 8° and 16⁺ isomer bands in ¹⁷⁸Hf were populated using a 650 MeV ¹³⁶Xe beam from ATLAS to bombard a thin 0.5 mb/cm² 89% enriched ¹⁷⁸Hf target. Prompt γ decays were detected in coincidence with scattered ions by Gammasphere plus the CHICO PPAC array. Prompt γ -decay yields as a function of scattering angle θ_{scat} in the $K^{\pi}=6^+$ and 8° isomer bands were measured as high as 10⁻³ of the 8⁺ \rightarrow 6⁺ GSB strength. A remarkably high 19⁺ \rightarrow 18⁺ yield, about 10⁻⁴ of the GSB strength, was unexpectedly observed in the known $K^{\pi}=16^+$ isomer band (Figure 1)^{3,7}. In most cases, the coupled-channel semi-classical Coulomb excitation code GOSIA was used to adjust matrix elements for the relevant transitions and reproduce the experimental data. Typically, a single model-dependent parameter was obtained as the measure of the coupling strength between bands, including errors correlated with all other adjustable parameters. While the Alaga rule accurately reproduced yields due to *K*-allowed transitions, a spin-dependent mixing (SDM) reproduced yields due to *K*-forbidden paths⁶ for low *K*.

FIGURE 1. A partial level diagram for $^{178}{\rm Hf.}$ Band A has been tentatively identified as previously unobserved states in the β -vibrational band.

A second experiment measured the Coulomb excitation function of the 16⁺ isomer in order to extract model-independent $<I_{K=16}||E2||I_{GSB}>$ reduce matrix elements. A stack of five 1 mg/cm² natural Ta targets was irradiated by a \approx 10 pnA, 858 MeV ¹⁷⁸Hf beam from ATLAS for E_{beam}=72% (target 5) to 88% (target 1) of the Coulomb barrier E_{Coul} . The targets were arranged normal to the beam, separated by 42 mg/cm² tantalum cylinders to collect scattered Hf ions over 40° $<\theta^{lab,seat} <90°$, so that <<1% of the nuclei Coulomb-excited to the 16⁺_{isom} state were lost or embedded in downstream targets. A 1.0(1) mg/cm² Ta scattering foil was used to scatter beam and target particles into a silicon detector mounted at $\theta_{scal}=45°$ to measure the absolute dose, 1.7(2) pmC, and the absolute activation cross sections (Figure 2). The GSB cascade following an isomer decay of the activated projectiles was used to count the activities five months later at Yale University's Wright Nuclear Structure Laboratory using two Ge "clover" detectors. The absolute efficiencies ($\approx 3\%$ for the 326 and 426 keV transitions in the GSB cascade) and the detection probabilities of relevant combinations of γ rays were calculated, including angular correlation and summing effects. Count rates were obtained from the >1-fold matrix by gating on the 326 keV $6^+ \rightarrow 4^+$ GSB transition and counting the coincident 426 keV $8^+ \rightarrow 6^+ \gamma$ rays.

FIGURE 2. Measured and calculated activity after a direct fit of matrix elements (χ^2 =3.5). The cross sections include errors in the total beam dose and measured target ablation. Target 2 (84% E_{Coul}) was not measured.

In the Xe beam experiment, it can be argued that the isomer bands could be populated through transfer reactions involving the 177,179 Hf contaminants in the target. An upper limit on 178 Hf(136 Xe, 135 Xe) 179 Hf transfer reactions was set using the only observed transition which could possibly be assigned to a 135 Xe transition (288 keV) in coincidence with a double gate on the 178 Hf GSB transitions. In the safe Coulomb excitation region, $25^{\circ} < \theta_{scat} < 52^{\circ}$, an upper limit on 177 Hf(136 Xe, 135 Xe) 178 Hf transfer was set at 10^{-5} of the 178 Hf GSB excitation. Assuming that the cross sections for 177 Hf(136 Xe, 135 Xe) 178 Hf (Q=-0.4 MeV) and 178 Hf(136 Xe, 135 Xe) 179 Hf (Q=-1.9 MeV) are similar, the upper limit on 177 Hf(136 Xe, 135 Xe) 178 Hf (Q=-0.4 MeV) and 178 Hf(136 Xe) 179 Hf (Q=-1.9 MeV) are similar, the upper limit on 177 Hf(136 Xe, 135 Xe) 179 Hf (Q=-1.9 MeV) are similar, the upper limit on 177 Hf(136 Xe, 135 Xe) 178 Hf (Q=-0.4 MeV) and 178 Hf(136 Xe) 179 Hf (Q=-1.9 MeV) are similar, the upper limit on 177 Hf(136 Xe, 135 Xe) 179 Hf (Q=-1.9 MeV) are similar, the upper limit on 177 Hf(136 Xe, 135 Xe) 178 Hf GSB in the unsafe region, $52^{\circ} < \theta_{scat} < 78^{\circ}$, divided among several bands. Moreover, transfer to a 4 quasiparticle state (*e.g.* the 16^{+} isom band) is very unlikely, since breaking a second pair of nucleons is a higher-order effect. Since no transfer is seen in the safe region, there should not be significant transfer near 52° , even in the unsafe region, where strong K ≤ 8 isomer populations are already seen far above background in the double-gated data. In the 178 Hf beam activation experiment 16^{+} isomer activation was observable at 72% Ecoul, consistent with the Coulomb excitation function (Figure 2). Nuclear interference is small at 88% Ecoul and $\leq 10^{-3}$ of the E2 contribution 8

ANALYSIS

In both experiments, a possible excitation path was determined to be insignificant if it could not reproduce the measured data using reasonable reduced transition probabilities for the particular multipolarity and change in collective or single-particle structure, *e.g.*, ≈ 1 W.u. for transitions between different quasiparticle configurations. Intrinsic matrix elements were fit to the ¹⁷⁸Hf(¹³⁶Xe)¹⁷⁸Hf data, connecting the

 $K=0^+$ GS, γ -, 4^+ , 6^+ and 8^- bands using Alaga and SDM systematics (Figure 3). The yield data for the 8⁻ bands were reproduced most accurately, and with the lowest B(E3) values (<4 W.u., reasonable in comparison to the 4 W.u. strength of the $3^-_{K=2} \rightarrow 0^+_{GSB}$ transition¹¹) by two-step excitations to both 8⁻ bands through the γ -band in conjunction with single-step excitations from the GSB, both using Alaga rule coupling systematics for K=5 admixtures in the low-K bands. It was necessary to attenuate the <8⁻||E3||GSB> and <8⁻||E3|| $K^{\pi}=2^+>$ Alaga matrix elements smoothly by approximately an order of magnitude per unit spin as I_{GSB} decreases from 6 to 10 in order to keep the isomer cross section from growing unreasonably large compared to the other quasiparticle isomers in ¹⁷⁸Hf and to preserve the 4.0(2) s half life.

FIGURE 3. The three strongest reduced transition probabilities from each GSB level for $GSB \rightarrow K^{\pi}$ transitions. $GSB \rightarrow 4^+, 6^+$ matrix elements follow SDM systematics. $GSB \rightarrow 8^-$ matrix elements follow the Alaga rule, attenuated at low spin. Transitions to unobserved high-spin levels (hollow) are extrapolated to clarify the spin-dependence of the intrinsic matrix elements in the models used. Weisskopf estimates (dashed lines): $B(E2\uparrow)_{Wu}=0.0297 \text{ e}^2b^2$. $B(E3\uparrow)_{Wu}=0.0132 \text{ e}^2b^3$.

A simultaneous fit to the 16⁺ isomer activity data and the prompt 19⁺_{K=16} yields of the first experiment led to a coherent set of $\langle I_{K=16} || E2 || I_{GSB} \rangle$ matrix elements with B(E2;K=0 \rightarrow K=16) \leq 1.4 W.u. with upper limits, several lower limits and several diagonal (uncorrelated) errors. The fit was constrained by measured upper limits on both the GSB \rightarrow 16⁺ feeding intensity (\approx 10⁻⁴ normalized to the 8⁺_{GSB} \rightarrow 6⁺_{GSB} yield in the Hf(Xe,Xe)Hf experiment), reasonable B(E2;GSB \rightarrow K^{π}=16⁺) values, etc. GSB \rightarrow K^{π}=16⁺ feeding is not insignificant, but the matrix elements which reproduce the yields are consistent with non-observation of feeding. In particular, the strength of the 1% 20⁺_{GSB} \rightarrow 20⁺_{K=16} γ -decay branch is 3 times smaller than the observable lower limit, while the observational lower limits for the energetically favored transitions are much higher, due to the unavailability of double- γ gates and clean single- γ gates. It was found that \approx 75%—80% of the isomer activation comes directly from connections between the GSB and the 17⁺_{K=16} and 16⁺_{K=16} states for any set of matrix elements, as long as K-mixing between the GSB and the isomer band does not decrease with increasing spin and a liberal 10 W.u. upper limit is imposed on the B(E2;GSB $\rightarrow K=16$) strengths.

INTERPRETATION

The systematic decrease with increasing spin of the hindrance of K-forbidden transitions is apparent from Figure 3. For each of the high-K isomer bands observed, reproduction of the measured yields requires that the interband $B(E\lambda)$ values increase with increasing spin and saturate at ≈ 1 W.u. for I ≥ 12 in the GSB and the γ -band. This saturation point represents the maximum mixing of K. For $I \ge 12$, reduced hindrance values of K-forbidden transitions from low-K to high-K bands are as low as $f_v \sim 1$. showing that the K-selection rule has little predictive power at high spin—highly Kforbidden transitions have similar strength to allowed interband transitions. Band interactions are reflected in the measured moments of inertia by an increase in slope of the moment of inertia I(ω), seen at I \approx 6 and I \approx 10 in the γ - and GS bands, respectively, while the B(E λ) values (Figure 3) saturate at ~1 W.u. as low as I \approx 8 and I \approx 10 for transitions from the γ -band and the GSB respectively, in order to reproduce the measured γ -ray yields in the $K^{\pi}=4^+$, 6^+ , 8 and 16^+ bands. Moreover, Coriolis alignment is expected to happen at much lower spin in low-K bands than in high-K bands¹² which are strongly deformation-coupled. The moments of inertia of the high-K bands are relatively constant in slope, with the exception of the 6⁺ band at I \approx 12. suggesting that the high-K bands are not K-mixed to the same degree as the low-K bands. The 16^+ band has a remarkably constant moment of inertia⁷ up to I=22. In contrast with the K=0,2 transitions to the high-K isomer bands, the $16^+_{isom} \rightarrow K^{\pi} = 8^-$ and 14⁻_{isom} $\rightarrow K^{\pi}=8^{\circ}\gamma$ decays are strongly hindered with 33 $\leq f_{v}\leq 165(5)$ in all of the five known branches^{13,14}, showing that the onset of significant high-K admixtures in the 8⁻ band must occur at I>18, if at all, whereas less hindered f_v ~1 transitions from the γ and GS bands are required to reproduce the present measured yields. That is, the strongly hindered decays of the $K^{\pi}=16^+$ and $K^{\pi}=14^-$ isomers to the $11^- < I_{K=8} < 13^-$ states are consistent with K being a good quantum number for the high-K bands, suggesting that mixing in the low-K bands is primarily responsible for the K-selection violations and that the EM matrix elements coupling to the high-K bands are sensitive probes of the K-distributions in the low-K bands. Coulomb excitation of a band with projection K, assuming that it is reasonably pure, would require admixtures K' in the low-K (nominally K_i) bands of $K-\lambda \leq K' \leq K+\lambda$. Hence, the mixing fractions of the $2\leq K' \leq 6$ components are depicted in Figure 3 as a function of spin by the B(E2; $K_i \rightarrow K=4$) values, the $4 \le K \le 8$ components by the B(E2; $K_i \rightarrow K=6$) values, etc.

The present results have revealed paths by which Coulomb depopulation of the ¹⁷⁸Hf 16⁺ isomer could be achieved. The 16⁺ \rightarrow GSB *K*-forbidden E2 paths would allow Coulomb depopulation of the isomer using heavy ions below the Coulomb barrier with a probability of \leq 1% compared to the in-band excitations¹⁵. This path is not expected to be effective for photo depopulation, since photon absorption is dominated by E1 transitions, but this does not rule out photo depopulation via a 463 keV E1 transition to the known 15⁻_{K=14} state, for example, calculated to be a \leq 0.1% effect using heavy ion bombardment and assuming B(E1; K^{π} =14⁻ $\rightarrow K^{\pi}$ =16⁺)≈1 W.u. for all transitions. The K^{π} =16⁺ to K^{π} =8⁻ transitions are highly forbidden, making this path ineffectual. While potential low-yield Coulomb depopulation paths have been

discovered, intermediate states which might mediate x-ray photo depopulation were not found.

CONCLUSION

The present work has revealed the Coulomb excitation paths of the $K^{\pi}=4^+$, 6^+_{isom} , 8^-_{isom} and 16^+_{isom} rotational bands in ¹⁷⁸Hf by rapidly increasing *K*-mixing with increasing spin (I) in low-*K* bands, while the high-*K* bands remain very pure, even at the same spin levels where the low-*K* bands are completely mixed. The rapid increase in the K-forbidden interband B(E λ) values coincides with the rotational alignment of low-*K* bands which has a noticeable effect on the moment of inertia above the *I*≈10 levels of the γ -band and the GSB. Previous measurements of isomer decay branching ratios are inconsistent with significant mixing occurring in the high-*K* rotational bands, while high-*K* band heads are pure in *K*. It appears that higher-*K* components are admixed in the nominally low-*K* bands with increasing spin, until the reduced transition probabilities saturate near ~1 W.u. for I≥12, signifying the total breakdown of the *K* quantum number.

ACKNOWLEDGMENTS

*Work supported by the National Science Foundation and the Air Force Office of Scientific Research. ⁶Work supported by the U.S. Department of Energy under grant number DE-FG02-91ER-40609. ⁶Work supported by the U.S. Department of Energy under contracts DE-FG02-05ER41379 and DE-FG52-NA25929. [†]Work supported by the U.S. Department of Energy, Office of Nuclear Physics, under contracts W-31-109-ENG-38 (ANL) and DE-AC03-76SF00098 (LBNL). [‡]Work supported by the Polish State Committee for Scientific Research under contract 5P03B04720.

REFERENCES

- 1. P. Chowdhury, et al., Nucl. Phys. A, 485:136, 1988.
- 2. P. M. Walker, et al., Phys. Rev. Lett., 65:416, 1990.
- 3. A. B. Hayes, et al., Phys. Rev. Lett., 89:242501, 2002.
- 4. P. M. Walker, G. D. Dracoulis and J. J. Carroll, Phys. Rev. C, 64:061302, 2001.
- 5. M. Loewe, et al., Phys. Lett. B, 551:71, 2003.
- 6. A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. 2. Benjamin, Reading, 1975.
- 7. S. M. Mullins, et al., Phys. Lett. B, 393:279, 1997; Ibid. 400:401, 1997.
- 8. D. Cline, et al., Nucl. Phys. A, 133:445, 1969.
- 9. D. Cline, Annu. Rev. Nucl. Part. Sci., 36:683, 1986.
- 10. A. E. Kavka, Ph. D. Dissertation, Uppsala University, Uppsala, Sweden, 1989.
- 11. R. M. Ronningen, et al., Phys. Rev. C, 15:1671, 1977.
- 12. P. Ring and P. Schuck, The Nuclear Many-Body Problem, Springer-Verlag, New York, 1980.
- 13. M. B. Smith, et al., Phys. Rev. C, 68:031302R, 2003.
- 14. R. B. Firestone, Table of Isotopes, 8th Ed., Vol. 2. Wiley & Sons, New York, 1996.
- D. Cline, A. B. Hayes and C. Y. Wu, In Proceedings of the 35th Winter Colloquium on *The Physics of Quantum Electronics*, Taylor and Francis, 2005. To be published.