Level Structure of ^{22}Mg: Implications for the $^{21}\text{Na}(p, \gamma)^{22}\text{Mg}$ Astrophysical Reaction Rate and for the ^{22}Mg Mass

1Argonne National Laboratory, Argonne, Illinois 60439, USA
2University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
3University of York, Heslington YO10 5DD, United Kingdom
4Simon Fraser University, Burnaby, British Columbia V5A, Canada
5University of Maryland, College Park, Maryland 20742, USA
6University of Notre Dame, Notre Dame, Indiana 46556, USA

(Received 2 September 2004; published 24 January 2005)

The level structure of ^{22}Mg has been studied with high-sensitivity γ-ray spectroscopy techniques. A complete level scheme is derived incorporating all subthreshold states and all levels in the energy region relevant for nova burning. The excitation energy of the most important astrophysical resonance is measured with improved accuracy and found to differ from previous values. Combining the present result with a recent resonance energy measurement of this state leads to a derived ^{22}Mg mass excess of $-400.5(13)$ keV.

DOI: 10.1103/PhysRevLett.94.032501

PACS numbers: 23.20.Lv, 21.10.Dr, 26.50.+x, 27.30.+t

The single largest contributor to the $^{21}\text{Na}(p, \gamma)^{22}\text{Mg}$ reaction rate under nova burning conditions is thought to be from resonant capture on a 2^+ excited state at 5714.4(15) keV. The level was first identified in 1972 by Rolfs et al. [13] from its γ decay, and subsequently confirmed in 1975 by Grawe et al., with an energy 5713(2) keV [14] giving a weighted value of 5713.9(12) keV [15]. The associated resonance strength was recently measured with the DRAGON spectrometer at the ISAC facility [1]. However, a significant discrepancy emerged between the precisely measured resonance energy of 205.7(5) keV and the value of 212 keV anticipated from the tabulated values of the ^{22}Mg and ^{21}Na masses [1]. It was suggested by Hardy et al. that this may be due to the need for a reevaluation of the ^{22}Mg mass [2]. Despite recent studies of the $^{24}\text{Mg}(p, n)^{23}\text{Mg}$ reaction [5,6], the identity of near threshold states remains largely undetermined. Besides the intrinsic importance of such information for tests of the nuclear shell model [6,8], a complete knowledge of the location of all possible states is essential for resonance strength measurements of the $^{21}\text{Na}(p, \gamma)^{22}\text{Mg}$ reaction rate [3]. The present Letter seeks to fully determine the level structure of ^{22}Mg and to indirectly determine its mass with high precision using modern γ spectroscopic techniques.

The basic experimental method has already been outlined in [16]. Here, a 15 pnA beam of 52 MeV ^{12}C ions was used to bombard a 150 μg/cm2 ^{12}C target for about 66 h to produce ^{22}Mg nuclei via the $2n$ fusion evaporation channel.

FIG. 1. (a) Gamma-ray spectrum measured in coincidence with ^{22}Mg residues. (b) High-energy γ rays detected in coincidence with the $2^+ \rightarrow 0^+$, 1247 keV transition in ^{22}Mg.

0031-9007/05/94(3)/032501(4)$23.00 032501-1 © 2005 The American Physical Society
Prompt γ rays were detected using the highly efficient GAMMASPHERE array of Ge detectors in coincidence with $A = 22$, charge state 8^+ recoils detected at the focal plane of the Argonne fragment mass analyzer, ^{22}Mg, ^{22}Na, and ^{21}Ne ions were cleanly resolved using ΔE-E information from an ionization chamber situated behind the focal plane. A γ-ray energy spectrum for events in coincidence with the ^{22}Mg recoils is presented in Fig. 1(a). Figure 1(b) shows the spectrum of γ rays observed in coincidence with the known 1247 keV $2^+_1 \rightarrow 0^+_1$ transition in ^{22}Mg. The energies, intensities, and angular distribution coefficients for the ^{22}Mg γ rays observed here are given in Table I. The intensities for strong transitions were fitted as a function of angle with respect to the beam axis using the function $W(\theta) = N[1 + a_2P_2(\cos(\theta)) + a_4P_4(\cos(\theta))]$. In the high-spin limit and assuming perfect alignment of an initial state, values of $(a_2, a_4) = (0.357, -0.107), (-0.25, 0), (0, 5, 0)$ correspond to a pure $\Delta I = 2$ quadrupole, $\Delta I = \pm 1$ dipole, and $\Delta I = 0$ dipole transition, respectively. A comparison of the proposed level scheme of ^{22}Mg with the known levels in the mirror nucleus ^{22}Ne [17] is provided in Fig. 2. The basis for these assignments are discussed below.

The recent overview of the structure of ^{22}Mg by Bateman et al. [6] forms a useful reference point for the present study. All the levels up to the 2^+_2 state at 5035 keV are given unambiguous adopted assignments in [6] and, indeed, all the major associated γ transitions are determined here with high-energy precision. Rolfs et al. [13] reported a transition at 604.6(18) keV, which was assigned to the decay of an excited state at 5006(2) keV to the 2^+_2 state at 4402 keV. No such transition was observed here. This excited state has not been observed in any subsequent reaction studies. Our data support the view of Ref. [6] that this state does not exist. The conclusion here is stronger since we demonstrate below that all states expected below the threshold have now been identified. For all other reported states below the proton threshold energy of 5.5 MeV, no definite assignments were adopted in [6] largely because of ambiguities in reaction model analyses and relatively poor experimental resolution. Here, comparisons with the already known ^{22}Ne mirror level structure and γ decays (see Fig. 2) [17,18] are very valuable. An 894 keV transition is found to feed the 2^+_2 level at 4402 keV. The only state feeding the corresponding 2^+_4 level in the ^{22}Ne mirror, that is not proton unbound, is a 2^+_2 level at 5146 keV, which predominantly decays to the 2^+_2 state. The $2^+_2 \rightarrow 2^+_1$ analog transition is observed with similar relative intensity in the ^{22}Ne mirror in the present experiment and is the only transition observed in this energy range for ^{22}Ne. The angular distribution coefficients are consistent with a $\Delta I = 0$ dipole transition and inconsistent with a stretched dipole. Therefore, we conclude that the 2^+_2 state in ^{22}Mg is located at 5296 keV. A 1985 keV transition is found to feed the 4^+_1 level at 3308 keV. The angular distribution coefficients support a $\Delta I = 0$ dipole assignment and are inconsistent with stretched dipole transitions. We assign this transition to the decay of the 4^+_1 level at 5293 keV, which is similarly strongly produced in ^{22}Ne and corresponds to the dominant decay transition from the analogue state in ^{22}Ne. The 2^+_2 and 4^+_1 levels at 5296 and 5293 keV would not be resolved in charged particle reaction studies, and we conclude that the single state at 5294 keV reported in [6] is in fact a doublet with the natural parity 4^+_2 component being preferentially populated in the (p, t) reaction. The 4^+_1 state should also be fed by the 3^+_1 level, found at an energy of 5641 keV in the mirror, which has a 30% branch to the 4^+_2 level and a 70% branch to the 2^+_1 level [17]. A 4205 keV transition is found feeding the 2^+_1 level in ^{22}Mg. The angular distribution is consistent with a stretched dipole transition and inconsistent with a $\Delta I = 2$ decay (thereby ruling out a possible 4^+_1 assignment) or $\Delta I = 0$ dipole transition. We assign this transition to the decay of the

<table>
<thead>
<tr>
<th>J^π</th>
<th>Level energy (keV)</th>
<th>γ energy (keV)</th>
<th>γ intensity (keV)</th>
<th>γ branching</th>
<th>a_2/a_4</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^+_1</td>
<td>1247.18(3)</td>
<td>1246.98(3)</td>
<td>100(8)</td>
<td>0.17(3)/-0.07(3)</td>
<td>2^+_1 \rightarrow 0^+_1</td>
<td></td>
</tr>
<tr>
<td>4^+_1</td>
<td>3308.21(6)</td>
<td>2061.09(5)</td>
<td>54.7(7)</td>
<td>0.34(4)/-0.15(5)</td>
<td>4^+_1 \rightarrow 2^+_1</td>
<td></td>
</tr>
<tr>
<td>2^+_2</td>
<td>4402.0(3)</td>
<td>3154.7(3)</td>
<td>10.0(4)</td>
<td>2^+_2 \rightarrow 2^+_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2^+_3</td>
<td>5035.4(5)</td>
<td>3788.0(5)</td>
<td>3.9(3)</td>
<td>2^+_3 \rightarrow 2^+_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3^+_1</td>
<td>5893.8(3)</td>
<td>3841.0(10)</td>
<td>0.94(15)</td>
<td>0.36(5)</td>
<td>(1^+_1) \rightarrow 2^+_2</td>
<td></td>
</tr>
<tr>
<td>6^+_1</td>
<td>5293.1(14)</td>
<td>1984.80(14)</td>
<td>8.3(3)</td>
<td>0.33(10)/0.13(12)</td>
<td>4^+_1 \rightarrow 4^+_1</td>
<td></td>
</tr>
<tr>
<td>4^+_2</td>
<td>5296.0(4)</td>
<td>893.98(9)</td>
<td>5.4(3)</td>
<td>0.15(6)/0.09(7)</td>
<td>2^+_2 \rightarrow 2^+_2</td>
<td></td>
</tr>
<tr>
<td>3^+_1</td>
<td>5452.4(4)</td>
<td>4205.4(5)</td>
<td>4.2(3)</td>
<td>0.78(4)/-0.31(18)/-0.06(23)</td>
<td>3^+_1 \rightarrow 2^+_1</td>
<td></td>
</tr>
<tr>
<td>2^+_4</td>
<td>5711.0(10)</td>
<td>4463.5(10)</td>
<td>1.2(2)</td>
<td>0.22(4)</td>
<td>3^+_4 \rightarrow 2^+_1</td>
<td></td>
</tr>
<tr>
<td>6^+_1</td>
<td>6254.2(3)</td>
<td>2945.8(2)</td>
<td>22.1(5)</td>
<td>0.30(7)/-0.07(8)</td>
<td>6^+_1 \rightarrow 4^+_1</td>
<td></td>
</tr>
</tbody>
</table>
Considering now the levels above the proton threshold, we clearly observe a 2946 keV transition to the 4^+_1 level giving an excitation energy of 6254.2(3) keV. The measured angular distribution is consistent with a stretched quadrupole transition and a 6^- assignment is proposed. Rolfs et al. [13] observed a similar transition and quoted an excitation energy of 6298(50) keV with a minimum assigned spin of 6h, consistent with the present data. Bateman et al. [6] reported a doublet structure at 6248.2(45) keV from the (p, t) reaction study. Earlier $(^3\text{He, }n)$ reaction studies [19,20] suggested a tentative 4^+ assignment for a single state around this energy, and shell model calculations as well as mirror systematics [6] would suggest nearly degenerate 4^+ and 6^- levels. The 4^+_1 state would be expected to decay predominantly by $I_p = 2$ proton emission and would then not be observed in the present study, whereas light ion particle transfer studies would be less likely to feed the high-spin 6^- state. We therefore conclude that the 4^+ state most likely lies a few keV below the 6^+ state identified here. Davids et al. [4] have recently demonstrated that the levels at 5962 and 6046 keV predominantly proton decay and, consequently, would not be observed in the present study. They assigned a 0^+ structure to the 5962 keV level, similar to Ref. [17] and in contrast to Ref. [5], which assigned these quantum numbers to the 6046 keV level. We note that the recent (p, γ) resonance strength value reported for the 6046 keV level [3] would imply a partial half-life $= 5$ fs, much lower than the value of 235(83) fs for the 0^+ analog mirror electromagnetic decay in ^{22}Ne [17]. The resonance strength measured for the 5962 level [3] would imply a partial half-life $= 70$ fs for a 0^+ state. Therefore, this would further support a 0^+ assignment to the 5962 keV level, and, indeed, the distorted-wave Born approximation fits to the data presented in [5] also appear consistent with this assignment. A tentative 1^- assignment was given to the 6046 keV level [4]. However, we would conclude that a 3^- assignment is now much more plausible. This is the only mirror level yet to be identified in this energy region. The 1^- mirror level is found at 6691 keV in ^{22}Ne and would imply an anomalously large energy shift. Recently, a state has been identified at 6591 keV in ^{22}Mg by resonant scattering of ^{24}Na on protons and paired with the 1^- state in ^{22}Ne [21]. Assuming the same mirror energy shift for the 3^- state as for the 2^- state gives an energy of 6059 keV, very close to the observed 6046 keV level. Assuming a 3^- assignment for the 6046 keV level, and taking the recent (p, γ) resonance strength measurement of [3], gives a partial half-life of about 35 fs in excellent agreement with the mirror transition value of 32(9) fs [17]. Conversely, a 1^- assignment would yield a half-life of about 15 fs compared with the mirror value of 240(130) fs [17] in ^{22}Ne. As a natural parity state, the 3^- level would be strongly populated in the (p, t) reaction [6], as is indeed observed, and would decay predominantly by $I_p = 1$ proton emission consistent with the measurements.
reported in [4]. Therefore, we assign the 6046 keV level to the 3$^+$ state. This completes the identification of all 22Mg states expected in the excitation energy range shown in Fig. 2. All the known states from the mirror nucleus 22Ne below the excitation energy of 6345 keV are now identified with a level in 22Mg, and all states predicted by the shell model calculation [6] have now been observed. This is an important conclusion for the measurement of the 22Mg reaction studies (e.g., [4]), we propose this state is not the 5837 keV state reported in [13], and as in earlier reaction studies reported in [3] and no further resonances need to be considered in the nova burning regime. Further to this conclusion, we find no evidence for γ decay from the 5837 keV state reported in [13], and as in earlier reactions (e.g., [4]), we propose this state is not present in 22Mg.

The γ decay of the important 2$^+_2$ astrophysical resonance is confirmed here with the observation of a weak, 14(4)%, branch feeding the ground state directly and a much stronger, 86(4)%, branch feeding the 2$^+_3$ level [Fig. 1(b)], in excellent agreement with the first reported observation by Rolfs et al. [13], where the corresponding branches were 13(3)% and 87(3)%, respectively. This is important to confirm as the resonance strength measurement of Ref. [1] was predicated on knowing the γ-ray energy from the most important astrophysical resonance and removes previous discrepancies (and uncertainties over systematic effects) between the 22Mg mass and astrophysical resonance energy values.

This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contracts No. W-31-109-ENG-38 and No. DE-FG02-94-ER49834.

25. I. S. Towner and J. C. Hardy (private communication).