The importance of 39Ar as a dating tracer for the time range between 50 and 1000 years has clearly been identified [1]. The detection technique Atom Trap Trace Analysis (ATTA) has been realized for rare krypton isotopes in the past decade [2,3] and its principle applicability to 39Ar has been demonstrated [4]. ATTA has the potential to measure 39Ar on small samples down to less than 1 ccSTP of Argon, corresponding to about 100 ml of air, 2.5 l of water or 1 kg of ice. This would especially enable the application of 39Ar as a tracer in oceanography or glaciology where samples smaller than 10 l of water or 1 kg of ice respectively are required for practical dating purposes.

We report on the development of an ATTA-setup for 39Ar [5] which gives a 39Ar-count rate of 0.6 atoms/h for atmospheric samples. Initially, spectroscopy of the relevant hyperfine transition in 39Ar has been performed [6,7]. Based on these results different atom-optical techniques have been developed to achieve the high 39Ar-count rate. Especially, an additional deceleration stage behind the magneto-optical trap center was found to enhance the counting rate by a factor \sim4. The 40Ar-background could successfully be eliminated by selectively removing 40Ar atoms with an additional laser frequency and thus allows the detection of single atoms with high signal to noise ratio without switching the trap parameters. A further increase in 39Ar-count rate is intended by systematic studies on enriched samples including the hyperfine nature of 39Ar, which is not present in the abundant argon isotopes.