

Passing in review of radio-noble-gas measurements by low level counting at University of Bern

Roland Purtschert

University of Bern

21/6/12

Topics

i. Introduction

Persons, Isotopes and timescales

ii. Activity measurements

Low Level Counting at Climate & Environmental Physics Institute Bern

iii. Sample preparation

Status and outlook

iv.Gas extraction in the field

Requirements and examples under specific conditions

v. Applications

Few snapshots

i.Introduction

Timescales and Tracers

i.Introduction ii.LLC iii.Preparation iv.Gas extractio v.Applications

21/6/12

$u^{\scriptscriptstyle b}$

b UNIVERSITÄT BERN OESCHGER CENTRE

Concentrations und Activities

i.Introduction ii.LLC iii.Preparation iv.Gas extraction v.Applications

8.10-16??

~10⁻¹⁰

(range of NG MS)

i.Introduction ii.LLC iii.Preparation iv.Gas extraction

21/6/12

TANGR 2012

~10⁻¹⁶

^b UNIVERSITÄT BERN OESCHGER CENTRE

i.Introduction

The pioneers at Physics Institute Bern

Hans Oeschger († 1998)

Heinz Hugo Loosli

Bernhard Lehmann († 2005)

Applied Geochemistry

Volume 6, Issue 4, 1991, Pages 419-423

Dating Very Old Groundwater, Milk River Aquifer

-	
	- Station

⁸¹Kr and⁸⁵Kr in groundwater, Milk River aquifer, Alberta, Canada

B.E. Lehmann, H.H. Loosli, D. Rauber

Physics Institute, University of Bern, Bern, Switzerland

N. Thonnard, R.D. Willis

Atom Sciences Inc., Oak Ridge, TN 37830, U.S.A.

Received 28 September 1989. Accepted 6 June 1990. Available online 15 April 2003.

http://dx.doi.org/10.1016/0883-2927(91)90041-M, How to Cite or Link Using DOI Permissions & Reprints Cited by in Scopus (17)

Abstract

The⁸⁵Kr activity of well No. 9 is (2.1 ± 0.3) mBq/cm³ STP ofKr or ≈0.3% of the modern atmospheric activity indicating that no young water component is present in this groundwater and that no contamination occurred in extracting a Kr gas sample for⁸¹Kr analysis.

The⁸¹Kr concentration was measured by laser resonance ionization spectroscopy to be <u>82 ± 18%</u> of the modern atmospheric concentration. Only 5000 atoms of⁸¹Kr were used in the final analytical step which represent \approx 7% of the initial number present in a <u>water sample of 50 1</u>. An upper limit <u>of 140 ka is</u> calculated for the age of the water from a simple⁸¹Kr decay model. Of key importance for the future use of a⁸¹Kr dating technique is the conclusion that subsurface production of⁸¹Kr appears to be unimportant.

Copyright © 1991 Published by Elsevier Ltd.

21/6/12

i.Introduction

The pioneers at Physics Institute Bern

Hans Oeschger († 1998)

Heinz Hugo Loosli

Bernhard Lehmann († 2005)

Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms

Volume 17, Issues 5-6, 2 November 1986, Pages 402-405

Ten years low-level counting in the underground laboratoryin in Bern, Switzerland

H.H. Loosli, M. Möll, H. Oeschger, U. Schotterer

Physics Institute, University of Bern, 3012 Bern, Switzerland

Available online 29 October 2002.

http://dx.doi.org/10.1016/0168-583X(86)90172-2, How to Cite or Link Using DOI

Permissions & Reprints

Cited by in Scopus (10)

Abstract

Although new techniques of direct atom counting have been developed, which are also discussed at this conference, the good old low-level counting technique is still important. Looking back to the first decade of measurements in our underground laboratory, we realize that many interesting results have been obtained. The following examples are discussed:

Although new techniques of direct atom counting have been developed, which are also discussed at this conference, the good old low-level counting technique is still important.

measured in tree leaves at reference stations in Switzerland, unaffected by man-made contributions, are presented.

Copyright © 1986 Published by Elsevier B.V.

21/6/12

β -Decay modes

i.Introduction ii.LLC iii.Preparation iv.Gas extraction

Oeschger counter: Principle

ii.LLC iii.Preparation iv.Gas extraction v.Applications

 $u^{\scriptscriptstyle \flat}$

UNIVERSITÄT BERN OFSCHGER CENTRE

➤The Oeschger counter allowed finally to measure ¹⁴C at natural activity levels.

➤It was the leading instrument for many years, which enabled e.g the first time to date the "age" of Pacific deep water

Oeschger counter: Background

ii.LLC iv.Gas extraction

High pressure proportional counters

i.Introduction ii.LLC iii.Preparation iv.Gas extraction v.Applications

LLC-³⁹Ar: Minimal water volume for a precision of 0.1

Air equilibrated water at 10°C and 1 atm, counting and extraction yield 0.7

Modern water

540 yr old water $(2 \cdot T_{1/2})$

Counting time: 1 month Water volume: 1.5-2 tons

i.Introduction ii.LLC iii.Preparation iv.Gas extractio v.Applications

Cinute and Environmental Phy University of

Background 16-cc counter: 0.02 cpm Counting time: 1 month Water volume: 0.5 ton

21/6/12

LLC-⁸⁵Kr: Minimal water volume for a precision of 0.05

Air equilibrated water at 10°C and 1 atm, counting and extraction yield 0.7

50 dpm/ccKr (τ~10 years)

Background 16-cc counter: 0.02 cpm

Counting time: 3 days Water volume: ~90 Liters

Counting time: 3 days Water volume: 200 Liters

i.Introduction ii.LLC iii.Preparation iv.Gas extraction v.Applications

Cinete and Environmental Print

LLC-⁸¹Kr: Minimal water volume for a precision of 0.1

Air equilibrated water at 10°C and 1 atm, counting and extraction yield 0.7

10000 ⁸¹Kr 1000 tons of water 100 10 0.5 years 1 year 4 years 0.001 0.01 0.1 1 10 100 background (cpm)

Modern sample

60 tons for counting time 1 year!!

i.Introduction ii.LLC iii.Preparation iv.Gas extraction v.Applications

21/6/12

LLC facility at University of Bern

- Deep laboratory (35 m.b.s. :70 m water equivalent) build with low activity concrete
- Passive shielding with old lead (²¹⁰Pb free)
- Active shielding (external guard counters)

OESCHGER CENTRE

³⁹Ar β -spectra in 16 cc counter

i.Introduction ii.LLC iii.Preparation iv.Gas extraction v.Applications

Background-reduction Active shielding Factor ~10 Modern sample: 0.039 cpm (2.2 cph) Background : 0.024 cpm (1.5 cph) (signal/noise: 1.6)

Sample Spectra ⁸¹Kr and ³⁷Ar

⁸¹Kr activity in tropospheric air:

0.1 dpm/l Kr (⁸¹Kr/Kr: 5.9·10⁻¹³)

³⁷Ar in tropospheric air in Bern from 25.3.11

7±2 mBq/m³_{air}

CTBTO, 2011

i.Introduction ii.LLC iii.Preparation iv.Gas extraction

Cheste and Environmental P

21/6/12

Large Volume Noble Gas Purifikation

Former Ar-Kr Separation System in Bern

Sample

MS: Molecular sieve 5 Å GC: Activated charcoal and MS 5 Å FT: Freezing trap SC: Sample container

i.Introduction ii.LLC iii.Preparation iv.Gas extraction v.Applications

Helium carrier
Injections of 2-litre aliquots into GC
Preparation time ~3 days

Current Ar separation system

Riedmann, 2011

i.Introduction ii.LLC iii.Preparation iv.Gas extraction v.Applications

Clinite and Environmental Physics Urbacaty of Bern Lithium-cation exchanged faujasite zeolite (Li-LSX)

> High adsorption strength for N_2

- ➢Best O₂/Ar separation at 153K
 - \rightarrow Temperature control is crucial

iii.Preparation

Temperature control

Direct heating of GC colums

page 20

473K

Kr Separation in Bern

≻Helium carrier

- ➢Kr purification by 3 GC steps using MS 5°A and AC
- >Large volume CH_4 separation over Cu oven
- ➤Separation efficiency 70-90% f([CH₄]
- ➤Separation time ~4 hours/sample

i.Introduction ii.LLC iii.Preparation iv.Gas extraction v.Applications

Kr seaparation at UIC

iii.Preparation

 $u^{\scriptscriptstyle \flat}$

UNIVERSITÄT RERN OESCHGER CENTRE

>N₂-Ar-O₂ depletion by a factor ≻of 50-100 in 3-4 hours

Gas chromatography: $ightarrow Kr+CH_4$ separation by AC ➢Kr separation by MS 5Å ➤~ 300 cc separation in 1 hour

Requirements for gas sampling

No contact with atmospheric air

- (Still) relatively large sample volumes must be extracted under controlled and constant conditions
- Degassing in the field with a <u>robust</u> and mobile device with <u>high extraction yield</u>

i.Introduction ii.LLC iii.Preparation iv.Gas extraction v.Applications

Note Because we measure isotope ratios (³⁹Ar/Ar, ⁸¹Kr/Kr etc) these methods are (rather) insensitive to

Details of recharge conditions (the addition of excess air, recharge temperature)

Degree of degassing (both in nature and during sampling)

Gas extraction systems

21/6/12

Vacuum cylinder extraction

i.Introduction ii.LLC iii.Preparation iv.Gas extraction v.Applications

21/6/12

Gasextraction with membranes

University of Bern 00 1 University of Heidelberg iv.Gas extraction

Pros and Contras

Extraction chamber		
Insensitive to the chemical and physical water composition (pH, Temperature, hydrocarbons, suspended matter etc)	Requires a low extraction pressure and is therefore more sensitive to leaks	
Easy to repair in case of breakdown by experienced personnel (importan in remote areas)	Leak testing and setup requires experienced personnel	
Operational for a large range of wate fluxes	Relatively high flow resistance may limit water flow rate	
Allows a low extraction pressure thu higher extraction efficiency	Not commercially available and therefor lavish to construct	

╋

Membrane contactors			
Commercially available membrane contactors, relatively inexpensive	Sensitive to the chemical and physical water composition:		
Modular: several contactors can be combined in parallel (increased water flux) and/or in series (increased extraction efficiency)	 Not suitable in the presence of substances which reduce the surface tension of water. Not suitable for a high-temperature 		
Compact and relatively easy to	environment (i.e., >70 °C)		
operate in the field	 Suspended or precipitated matter may clog the pores 		
Low inlet water pressure facilitates high water flux; operational over larg flux range	A damaged membrane requires a relatively complex regenerating processes		

ii.LLC iii.Preparation iv.Gas extraction v.Applications

Sweep Cas

21/6/12

^b UNIVERSITÄT BERN OESCHGER CENTRE

Varying conditions: untapped water

i.Introduction ii.LLC iii.Preparation iv.Gas extraction v.Applications

21/6/12

Varying conditions: untapped water

21/6/12

Sampling under varying conditions: little water pressure

Even more exotic problems

Yellowstone, USA, 2007

iv.Gas extraction

Large volume ice sampling

Oeschger et al, 1976

⁸¹Kr: water volume

³⁷Ar as a monitor for clandestine nuclear explosions

Atmosphere ${}^{40}\text{Ar} + \mathbf{n} \rightarrow {}^{37}\text{Ar} + 4n$

i.Introduction ii.LLC iii.Preparation iv.Gas extraction v.Applications

Climate variations over the past millennium (The hockey stick controversery)

IPCC 2001 (Mann et al, 1999)

i.Introduction ii.LLC iii.Preparation iv.Gas extraction v.Applications How well can past temperatures be reconstructed from the data we have? ➤Was the late 20th century the warmest period during the last 1,000 years? ➤Are tree rings valid temperature proxies?

Without using the Bristlecone and Foxtail proxies in the reconstruction, does a hockey stick even exist?

$u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN OESCHGER CENTRE

Groundwater as an climate archive

NGT's offer an independent and physically based reconstruction of MAT that may not be captured by high resolution data sets (if an appropriate dating tool is available)

Age chronology with depth

v.Applications

$$\frac{d^{18}O}{d^{\circ}C} \approx 0.56\% / {^{\circ}C} \to \Delta T \approx 0.8^{\circ}C$$

(Schrag, 1996)

21/6/12

GAB, Australia, 2009 (Photo: Paul Shand)

Nubian Aqifer Egypt, 2002